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1. Introduction

Asymptotically AdSs, rotating, electrically charged supersymmetric black holes of minimal
D = 5 gauged supergravity with regular horizons were first constructed by Gutowski
and Reall in [[, B]. These solutions have been further generalised in [J—[]. When lifted
to 10-dimensional solutions of type IIB, these geometries asymptote to the maximally
supersymmetric AdSs x S° solution and preserve just two of the 32 supersymmetries [[f].
One of the important outstanding problems in string theory is to account for the entropy of
these black holes both from the string theory and the holographic boundary gauge theory
points of view.



The standard way of counting the microstates of a supersymmetric black hole in string
theory is to count the BPS states of the D-brane system in the asymptotic geometry of the
black hole. In recent times it has been realised that the entropy of extremal black holes
depends just on the string theory in the near horizon geometry called the attractor geom-
etry of the black hole. Therefore, the Bekenstein-Hawking-Wald entropy should also be
related to a certain number of appropriate BPS states in the attractor geometry or those
in the holographically dual quantum mechanics. This program has been demonstrated
successfully in the context of 4-dimensional extremal black holes in [B, ] (see also [[Ld]
and [[L1])). For the supersymmetric AdSs black holes of [, f] , one expects two complemen-
tary approaches to count the microstates as well: (1) count the BPS states with the right
charges in the AdSs x S® background, (2) count an appropriate set of BPS states in the
near-horizon geometry. The problem of counting BPS states with just two supersymme-
tries in AdSs x S° geometry is a hard problem (see [[3-[[4] where the problem of counting
the BPS states with four supersymmetries was addressed, and [[[§] where a fermi-surface
model was proposed to achieve qualitative agreement with the counting). In this paper,
we initiate addressing the problem using the second approach.

We consider the single-parameter black holes with equal angular momenta [[]] in AdS5
directions and a single U(1) electric charge. When the angular momentum vanishes, this
solution reduces to AdSs. We lift the near-horizon geometry of the black hole to a solution
of type IIB supergravity in ten dimensions. By studying the integrability condition of the
Killing spinor equations, it is found that the number of supersymmetries of the near-horizon
geometry is four, which is twice the number of supersymmetries of the full black hole. We
explicitly construct the Killing spinor in both Poincaré and global coordinates. Using the
Killing spinor solution and the technique of [[[d, [7], we show that the superisometry group
is SU(1,1/1). We demonstrate that the full isometry supergroup of the 10-dimensional
near-horizon solution is SU(1,1|1) x SU(2) x U(3). As one expects for an extremal black
hole there is an AdSs factor in the near-horizon geometry and we consider both Poincaré
and global coordinates for it.

We then initiate the study of probe branes in the near-horizon geometry along the
lines of [[LI] in the context of BMPV back holes [[§]. Two sets of probe D3 branes are
found which preserve half of the near-horizon supersymmetries. These are the analogues of
giant gravitons [[J] and dual giant gravitons [0, BT} in AdS5 x S5. The probes in Poincaré
coordinates are static and have vanishing Hamiltonians. They still carry non-zero angular
momenta because of the rotation of the background. The probes in global coordinates

rotate and have non-zero angular momenta and Hamiltonians.

The paper is organised as follows. In section 2, we lift the near horizon solution to
ten dimensions. In section 3, we solve the Killing spinor equation explicitly in Poincaré
coordinates. In section 4, we derive the isometry supergroup of the geometry. In section 5,
we consider the problem from the point of view of global coordinates and solve the Killing
spinor equation in these coordinates. In section 6, we initiate the study of probe branes in
Poincaré coordinates while in section 7, the probe branes are studied in global coordinates.
We conclude with a brief discussion in section 8.



2. The black hole and its near-horizon geometry

The metric of the five-dimensional solution with equal angular momenta is specified by the

finfbein [EI]

1
202 2\ 72
e’ = F(dt + Voi), e1:.7-“‘1<1+l—2+l—2> dr,
e? = galL, ¢’ = gazL, e! :2% P+ 20 4 1703 (2.1)

The right-invariant one-forms on SU(2) are o = sin ¢ df — sin @ cos ¢ dip, 0% = cos pdf +
sin € sin ¢ dy and O’:)[; = d¢ + cos O dy, where 0 < 0 < 7,0 < ¢ < 27,0 < ¢ < 4w. They

satisfy daiL = —%eijkajL A U,f with €193 = 1. Furthermore
2 2 2 4
w nr 2w 3w
F=1-— ’ V=" (1+—+———, 2.2
r2 21 ( + r2 * 2r2(r2 — w2)> (22)

with n = £1 and w is constant. The 1-form gauge potential is given by

V3

A=
2

4
nw- oL
[]—"dt + 7 03} : (2.3)
We choose n = 1 from here on. This solution asymptotes to global AdSs and in this limit

reads

2 d 2
eO:dt—T—agf, 61:770, eZ:ZUf, engaé, e4:£\/1+r—2a§ (2.4)
21 1472 2 2 2 l

V31t

with F = dA = 0. This can be put into the standard form by writing ¢ = ¢ + % and t =t
which imply % = a% + %(% The black hole solution carries an electric charge under the
U(1) gauge field given by

! Vanw? <1 W >

= — in .
O G o T e

(2.5)

where G is the 5-dimensional Newton’s constant. The black hole carries an angular mo-

mentum given by

3rw? 202
J = 1+ — 2.6
RIG ( * 3z2>’ (26)
while the entropy is
2 2
™ 4 3w
= 14+ — 2.
SBH S Yekd Tz (2.7)

which may be written as [P4]

3
St = W\/PQ? _ % 7| = m/PQ2 — AN |, (2.8)



in terms of the electric charge and angular momentum of the black hole. Here N? = kil

2G
The near-horizon limit of this geometry is
3w? wl dr w w
e = —dt—ﬂa?f S 2 S 3; 702
3(2r w 3 2w
4 L 0 4
- “\o A= ——dt+— = — — . 2.9
DY 2<w +4z03> 2<6+)\6> (29)

Here we have defined
A=V12+3w2. (2.10)

The gauge field strength, F' = dA is given by

F— \/§[3 14 623_2)\601}

21 w
3 2
WF = g_l_ [36023 — M4 2y 6234} (2.11)
w

The equations of motion are

1 12
Rab - 2Fachc + g (chFCd + l_2>nab - 07

2
dxF+-—=FA\F =0. (2.12)

V3

where our convention for the Hodge dual is €gio34 = 1. We will now lift this to a ten-
dimensional solution. The lift formula is [Pf] (see also [26])

3

2
dsiy = ds3+1°) [(dﬂi)Q + (d& Ne )

i=1

2 3
6 — (14 *(10)) [ 4V01 \/— Zd () A dé; A *(5) F@® (2.13)

where p1 = sina, ps = cosa sinf, us = cosa cos 3 with 0 < a < 7/2, 0 < 8 < 7/2,
0 < & < 27 and together they parametrise S°. Note that we define the Hodge star of a
p—form w in n-dimensions as *(n)wil---in—p = %!Gil...in,pjl"'jpwjl...jp7 with €0123456789 — 1 and
€01234 = 1 in an orthonormal frame. The ten-dimensional geometry is specified by (R.9)

together with

ed = lda, ¢S =1 cosadp,
e’ =l sina cos o [dé; — sin? B dEy — cos? §dEs],
e® =1 cosa sin 8 cos B [déy — dés,

2
e = —EA —Isin® adé; — 1 cos? o (sin? B d€y + cos? B dEs). (2.14)



and the five form [R5, p6, [
FO = —Al O Nt A2 A net F SN AT A A€

+i(e5 Ael+eSAed) A (*(5)F(2) —? AF®@)

V3

= _?(601234 + 656789) _ %(657 + 58 A [_ 3e023 4 014 _ 2)\ 0234
w

2
+e? A <3€14 —e®B -2\ 601>:| . (2.15)
w

3. The Killing spinor

In this section, we will solve the Killing spinor equation. The strategy will be to use
the integrability condition to simplify the equations on a projected subspace. The ten-
dimensional Killing spinor equation is [f

Dye + —_pmmensninsy | () e=0. (3.1)

1920 Nn1N2N3N4ens -~

We record the useful identity

Mrn1n2n3n4n5Frgl)n2n3n4n5Fm = 4_l To1234 — Z(F +T )<3F023 —To1qa — UP234

X(l + Fn)rm
1
S ML+ D) Taeh,. (3.2)

Here m is a spacetime index while a is a tangent-space index. The integrability condition

is [

1
[Rmnslsg - EF(5)m81T1T27"3F(5)n;21r2r3:| 5152¢
) 5 1
+ [ﬂv[mFr(ﬂs)wwaM + %F$2T1T281F(5)r812?384:| [o1e23%te = 0. (3'3)

Using a computer algebra program it can be shown that these impose the constraints
JTO149, _ 2357, _ 2368, _ _ 15678, _ _ (3.4)

e =TT =% = —je.
Of these only three are independent which may be chosen to be
M09 —je, TBe=—ie, I'"e=—ie. (3.6)

From these projections it follows that the solution in (R.13), (R.1§) preserves at most 4
supersymmetries of the possible 32. After some tedious but straightforward algebra, one



can verify that on the constrained subspace the components of the Killing spinor equation
simplify to:

43\

<at ! ;P4I“0P+> —0, (3.7)
3 w 3 w
_2%r r 2 ¥ — .
<3r+[ oy 5y o4 T 5 Too = or o 49]) 0, (3.8)
8¢e:0, Ope =0, Oye =0, (3.9)
One =0, Oge=0, (3.10)
(agj n %) e=0, for j=1,2,3,  (3.11)
where we define the projectors
1
P:t = 5(1 ﬂ:rog) ,

so that PLP_ = 0 = P_P,. All angular equations can be easily solved. This leads to the
Killing spinor ansatz .
e = e 3(EHRFG) (1) (3.12)

Then the solution to the ¢ equation is

2irt

e(r,t) =e w2 Me (1), (3.13)

where My = —(Tyg + Toq) = —Tyg(1 + Tgg) = —2I'49 P, and satisfies M2 = 0. Plugging
this into the r equation leads to

3w

O = o

1
F49P+€T — Z(P_i_ — P_)Er . (314)

Now writing €, = € + ¢,” such that [gge®t = +e* we get

1
8r€j = —§€j, (315)
3w 1
- =—7T —€. . 1
ore, N 496 + 27“6 (3 6)

The first of these immediately leads to
+ Lo+
€= — (3.17)

where eaL is a constant positive chirality spinor. Plugging this into the second equation

leads to

_ _ 3w
€ = \/FGO - WPZIQES—’ (318)

where ¢, is a constant negative chirality spinor. Thus the complete Killing spinor is

i didrt 3w
e=e 2 (&1+82+83) <\/_60 W( — o2 P49P+> <1 — ﬁr49> > . (319)



Here eoi are subjected to the same projection conditions as €. The novelty here compared to

the full black hole is the appearance of the other chirality eér in the solution. Alternatively,

this result can be expressed compactly as:

_ didrt 3 1
e=e w2t 1190+ (X Ta0Pr—3T00) Inr (3.20)

It is sometimes useful to split the solution in terms of I'gg chiralities:

€

i 1 4iArt
€ = 6*§(§1+52+53) <\/,,_~60 _ W (2—;‘\) + %>F4966r> . (3.21)

Thus we conclude that the 10-dimensional lift of the near-horizon geometry of the black

+ = 6—%(£1+§2+§3)i66r,
T

hole under consideration preserves precisely four supersymmetries with the explicit Killing
spinors in egs. (B:21)). We next turn to computing the isometry superalgebra of this geom-
etry.

4. Isometry supergroup

In the present section we shall need the basis vectors dual to the ten-dimensional frame of
the near-horizon geometry in Poincaré coordinates. These are:

- w 1 - 2

€0 = Q_Tat - 7(851 + Og, +a§3)7 €1 = W&"? (4.1)
1

€y = — (2sin ¢dy + 2 cot O cos pOy — 2 cos ¢ cosec §0y) , (4.2)
w
1

€3 = — (2cos ¢y — 2 cot O sin pOy + 2sin ¢ cosec §0y) , (4.3)
w

. 3w? 21 2w 1 _ 1

€4 = —4)\r5t + Jaaﬁ - ﬁ(aﬁl + 05 +0g), €= 7304, 6 = 7560@867 (4.4)

1
T =7 (cot adg, —tan ade, — tanad,) , €3 = 7 (cot Bsec ade, — tan fsec adg,) (4.5)
- 1
€9 = _7(851 + Og, + Ogy) - (4.6)

Following the prescription in [[6, [}, we now turn to the computation of the Killing
spinor bilinears él?e which are Killing vectors. For the ten-dimensional complex Weyl

representation of definite I'gg-chirality, one can show that

% =0, (4.7)
unless a = 0 or a = 9. Conversely
%t =0, (4.8)
ifa=0o0r a=29. Define '
c:—%g—ﬁgt (4.9)



First consider a = I where I # 0 or 9. We have
1
e = EO_FIGS_ + EJOFFIGJ + ;ES_(CPIP49 - C*F49F1)63_ . (410)
Next consider a = z where z = 0 or 9. This gives
1
&M% = rey TPey + €5 eI Tagel — €5 " Tuol ey + ;gg(rz —cc* Tyl Tug)ed . (4.11)
Thus we have,
(e%)&, = &0 (€0 — E9) + & Tacd (c(Eo — €o) + é4 4 ié1) + &g T el éa
+ei Tyey (" (@0 — 9) + &4 —i61) + & T g éa
1
+€0+F068L—(éo +ég+ (c+c")éy—i(c—c)ep +ec™(ég — é9g))
L1
+€8LF49F €5 - (c —c"éa, (4.12)

where A takes all values from 2 to 8 except 4. The terms involving A vanish as we show
now. Note that the spinor & can be written as (1 4 il'93)(1 + ils7)(1 + iT'ss)€o/8 so that
we may always pull a suitable one of these projectors through I'4 which then changes its
chirality and annihilates the conjugate on the left. We have therefore shown that there are
four independent coefficients of the form & I‘“eoi contained in the Killing spinor bilinears.
This demonstrates that there are four bosonic generators in the superisometry group. In
other words, each of these generators corresponds to the coefficient of a certain linear
combination of 212}, 21235, 2] 232 and 23223, Where 21, 232 are taken as the two independent

complex components of the Killing spinor. Thus the independent Killing vectors are:

Y = r(& — &), (4.13)
k2 = c(ég — ég) + &4 + ey, (4.14)
EB) = *(é(] - 69) + €4 — 161, (415)
1
W = ~(0+ 9+ (c+c")es —i(c = ¢)er + ec™(é — &) (4.16)
These vectors can be easily verified to be Killing. Expressed in the holonomic frame these
are:
KD = gat, (4.17)
—2i\ 21 2w
E? = t0 — 10;) + —05 — 0 4.18
R R G VA (4.18)
21 21 2w
k3 = = (t0, = 10,) + —0p — ST 0, (4.19)
o wBE+N) 1 2?2 162 6l 1 2l 1
KW = T—a + 85120 — gty — 5= 0 — 50 (4.20)

All these Killing vectors are null. Rescaling k) by % and defining %(k:(z) — k(?’)) =J,
%(k:@) + k(3)) =7, kW =t kW = F~ we get the non-zero commutators

(J.BE¥| =+E*,(J,2)=[Z2,E*) =0, [Et,E7| =27 . (4.21)



This is the algebra sl(2, R) @ u(1) where E*, J are the generators of sl(2, R) and Z is the
generator of the u(1) R-symmetry. Just as there is a bosonic charge Q (k) associated with
each isometry k of the solution, to each Killing spinor €, there corresponds a fermionic
charge Qr(e). The algebra of these is encoded in the decomposition of the bilinears con-
structed above in terms of the bosonic charges [[[f, [7] (see also P2, PJ]). To extract the
decomposition in a convenient form, we define the two linearly independent Killing spinors

1 i
D — %6_5(51"‘52"‘53) [ear +CF49€6F] (4'22)
2 — \/;e*%(£1+§2+§3)€a‘ (4.23)

We obtain the following linearly independent bilinears

(D) e, = (G T KD, (Do) &, = (6 0 ) k)
(4.24)
(Do) g, = (T4eg) K, (Do) g, = (T ) KW,
Let us define the fermionic generators associated to the Killing spinors as follows
M - QM €@ - Q@ (4.25)

Then it immediately follows from ([.24) that

[Q2.QV} =247, {QW,Q®} =2 - 7, {Q®,Q®)} = B, {QV,QW} - B~

(4.26)
All other odd-odd anti commutators are zero. These are in the standard s[(2|1) form [27].
In addition to k), ..., k(®), there are also bosonic isometries of this solution which are not

associated with the supergroup. To this end it can also be verified that the left-invariant

vector fields (which generate right translations)

{f = —sindy — cot 0 cos 10y, + cos pcosec 00y,

55 = cos dy — cot 0sin1p0y, + sinpcosec G0y,

& =0y, (4.27)
satisfying [szaij] = —Ez’jkflf are Killing, reflecting the su(2)r isometries of the squashed
53 of the near-horizon region. In addition to these we expect there to be more bosonic
isometries coming from the S® part of the geometry that preserve the 1-form izzzl Z; dz;
where z; = e’ as before with py = sina, po = cosasin and p3 = cosacos 3. The

following can be seen to be Killing vectors of our geometry.
Jig + Joa = —cos&ia[sin B0, — tan accos 3 0g| + sin &i2[cot arsin 5 0¢, + tan o csc 3 0g, ),
]
]
Jie — Jos = sinéiz[cos B0, + tan asin B dg] + cos &13[cot avcos 3 0¢, + tan acsec 3 O, ],
J3s + Jug = — cos €23 03 + sinasfcot B Og, + tan £ 0g,],

Jzg — Jus =  sinéog 3ﬁ + cos €a3 [COt I} 8&2 + tan 0 ({953],
Jio = (951, J3q = (952, Jsg = (953 . (4.28)

[
Jig — Joz = siné&yafsin 0, — tan avcos B 03

+ cos &ia[cot asin B 0g, + tan acsc 5 Og, ),
Jis + Jog = —cos &i3cos 30, + tan asin 5 0g [

]
+ sin &13[cot o cos B 0g, + tan asec 3 0g,],
]



where &;; = & — &;. These form the algebra u(3). The algebra can be calculated using
[Jij7 Jmn] = 5ianm + 5jmJin - 5imJjn - 5jng‘m- (4.29)

We have checked that the Lie-derivative of the five form along all the above Killing vectors
vanishes. Thus we have demonstrated that the isometry superalgebra of our near-horizon
geometry is su(1,1]1) @ su(2) ® u(3). Hence, we conclude that the isometry supergroup is
SU(1,1]1) x SU(2) x U(3).

5. Global coordinates

We will now consider global coordinates. Let us first rewrite the five-dimensional part of
the metric in Poincaré-like coordinates as follows:

A1+ 34 w?  dr? W?
ds® = —72( éiﬂ) r2 dt* + ——= T Z((Uf)Q + (02L)2>
w?(1+ 27) A1+)
w2< 3w2> I 6
+— |14+ —5 ) |03 + ———F5-rdt 5.1
IRV TR ) o1

We perform the coordinate transformation’

V0% 4 p? sin T
t = 2/) > b —, T =—p+ b+ p? cos%, (5.2)
a[—p + /b? + p? cos 7]

3 2 2 qoin T
6ab lgb—i-\/b +p smb.

T i T
wl bcos 3 — psin g

¢ =0+

2 22 o o
Here a? = W and b? = j)\lg . This brings the metric into the form
“ az

2 dp? 2, . 2 32 B 6ab 2
ds® = —<1+§—2> dr - f,,Q +%((a%)2+<a§>2)+%<1+4—72> (aé—&pch) . (5.4)
b2

where 5’s have ¢ in their definition. The AdSs part of the metric is now manifestly in
global form. The gauge field reads
5[t - ae]

A=_2" |2 5L _ =
2 4l03 wabpdT

after a gauge transformation. We choose the tangent space basis to be

6ab
= fdr, e'=fldp, €= g&f, e = %65, et =Y (&9? — %pdT) . (5.6)
w

where f = /1 + Z—;. For notational convenience we will drop the tilde from now. In this
basis the field strength and its Hodge dual associated with A are

3] 2 1 3| 2 1

2 |wab I 2 |wab I

1To cover the full range of r,t the range of p and 7 should be between —oo to co.

,10,



These satisfy the equation dx F + %F AF = 0. After the 10-dimensional lift, the five-form

reads

4 1 21
F(G) — _7(601234 + 656789) + 7 (657 + 668) A 014 — 239 4 — (6234 + 6019) . (5.8)

The projection conditions following from integrability in global coordinates turn out to be:

0149 2357, _ 2368, _ 5678

€=c¢, (5.9)
e =ie, Ie=T%e=—je. (5.10)

€ = —1i€,

showing, again, that at most four supersymmetries are preserved by the near-horizon ge-
ometry. Note that these conditions are almost the same as, but nevertheless different from,

the corresponding ones in Poincaré coordinates. The flux contributes

21
5 _ 57 68
1920 Fn1n2n3n4n5F7(Ll)n2n3n4n5F = 4[ F01234 -+ 4(F +T )( — F014 + —wabF234>:|
X (1 + Fn)rm
1
= SMg(1+ 1), (5.11)

to the Killing spinor equation. Here m is a spacetime index while a is a tangent-space

index. Using these we get the following simplified component equations:

3t
<(97 552 F49 + f( Flg + lFQg)) =0, (5.12)
—M 1
(a i > ~ 0, (5.13)
Ope =0, Ope =0, Oype=0, (5.14)
On€ =0, Oge=0, (5.15)
<a£j+%>e:o, for j=1,2,3. (5.16)

where M = ( Tos + wab Tg9), which satisfies M? = 1. Again, all the angular equations
are trivial and may be integrated immediately. Let us now solve the p equation to write

e(r,p) = e 25§ Me(7), (5.17)

where sinh™! z = log[z + /1 + 22]. Then to solve the 7 equation let us first rewrite the
equation in the following form

67—6 F49 - f MF49] (518)

2b[b
where we make use of the projection I'gi49€ = 7€ to eliminate I'1g in favour of I'g4. Then it
is straightforward to verify that the spinor

e(r,p) = ez sinh”! gMe_%MF‘m%eo , (5.19)

— 11 —



where ¢ satisfying all the projections conditions is a solution to the Killing spinor equation.
This solution can be split in terms of M eoi = :I:eoi as

€= <e 2 COS 2_b + je? sin —bF49> T4 <e% cos 2% —je 3 sin 2%1“49) €0 » (5.20)

where p = bsinh x.
Supergroup in global coordinates

The supergroup in global coordinates can be computed in the same manner as was done
in the Poincaré coordinates. The basis vectors dual to the global vielbein are the same as
in Poincaré coordinates with the exception of

o1 6ab 2ab .

0 = 7@ + Wp b= IfP PO + O, + 0g5)» €1 = [0, (5.21)
B 2ab wa

1= 0+ 55 (351 + g, + Ogy) - (5.22)

In the same way as in section 4, one can use the constraints from the integrability condition
to show that the only nonzero bilinears are (el'ge),(el'1€), (e'4e) and (€lge). In addition
we can use the condition M ef)t = ief)t to derive the following relations

4+ l _+ b (-t
(@ Toey) = 3om (o Tacq) (@ Toeg) = =25 (G Taed) (5.23)
(égtfoeoi) :ng(eo F460 ), (égtflegc) = i%(%meﬁ) .
With the aid of these we compute the independent bilinears.
(el'%) eq =
) 3iwab —3wab
(6)0|—F460_) mTw cos %él—%z sin ;éo—i—( wa fsin— 2 +1> €4+ <2—l +if sin ;)ég]
[—1 j 3iwab 3wab
+(E6I’466r) _ 12aw coS %él +%§ sin %é0+< ;}a fsin Z—{—l) 64—|—< ;Za —if sin %) ég]

[ l 21
+(€§F463)_—% sin %él—§<§ cos%—f)éo—i-(fcos%—%)éﬁ—m(fcos%—%)ég}

[ l 21
+(E6I’4ea)_—% sin %él—%<§ cos %—!—f)éo—l—(fcosg—l—%)éﬁ—m(fcos%—i—%)ég} .

We have checked that these are Killing vectors of the near-horizon metric. Expressed in
the holonomic basis these are:

9 ;212 ) ;272
oM = mu)psin Or+——— iaw cos Za,,+ <%b+3za b sin Z>a¢+<_abw__m b sinz>8§

2bf 2 b lf b 12 fl b
02— (D)=
l T fl T 2ab T 2ab
3 — _Pos T _ in — 29, —
v 3bf< 7, Cos b>8T 3bsmb3p+ fcos b(% W f 85
l T fl T 2ab T 2ab
(GO P ocos = _Yainl 27 cos = L
v 3bf<f+ sb>8T 3bsmb6p+wf cos b8¢ 30 fcos (95 (5.25)

The generators of the purely bosonic isometries do not change in the global coordinates.
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6. Poincaré D-brane probes

In this section we initiate the study of probe branes in the near-horizon geometry. To
establish our conventions we quote here the D3-brane action we shall be working with:

Spz = — [/ dvol £ c<4>] : (6.1)
D3

In this expression, dvol is the volume form associated to the induced metric on the world
volume, which we denote by h, and C® is the pull back of the four-form potential. The
positive sign is for a brane and the negative sign for an anti-brane. The conserved charges
will be specified using the point particle Lagrangian denoted by L obtained after integrating
over all the spatial coordinates. From a world-volume perspective, supersymmetry of a
configuration can be established by studying the kappa-symmetry condition. We say that
an (anti-) brane is supersymmetric if it obeys an equation of the form

Fe = +ie. (6.2)

The negative sign is for a brane and the positive sign for an anti-brane. The spinor € is the
background Killing spinor derived above. Here I' is the kappa-projection matrix, defined
as

11
Ty
1
= —— + (—=h —h +h +h —h —h
\/_—h(%%%% ( 01723 03712 02713 13702 12703 23%1)
+(hazho1 + hi2hos — hizhao)) , (6.3)

0;0j0k0]
IYO',L'U]'O']CO'[

and 7,, are the world volume gamma matrices
VYo, = 05, XM, . (6.4)

and Vg0, = %(ygﬁaj ~ Y9;Y0;)- The world-volume gamma matrices satisfy {yy,,70;} =
2hg,5;- As in (6.9), we will sometimes find it convenient to use the shorthand v; = ~,, for

world-volume indices.

6.1 Solving the equations of motion

In Poincaré coordinates one can write the 5-form RR field strength as F©® = dC® where

2w 2
CW = 22024 4 ot o 878 A <eg + —A> 6.5
: 7 (65)
2

N [A/\(657+668)/\ <69+%A> +%<e9+%A> A (*F%—%A/\Fﬂ :

2 3 lw? 2w?
*F+%A/\F: \/T— [eo/\(e%—614)4-%(14'%)0123} . (6.6)

with
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6.1.1 Giant probes

Let us now turn to probe D3-branes that wrap a sub-manifold of the deformed S° part of
the geometry similar to the giant gravitons of pure AdS. We choose the following static-

gauge ansatz
t=o00, B=o01, & =02, & =03 (6.7)

with the rest of the coordinates assumed to be functions of oy only. The DBI part of the
action follows from?

2

[ .
\/—det hoigj =0 cos o1 sin o cos® [(2082 « (w?’Eg + 8l7“)2 — 64lwr <w223 — ?sin? a&)
w

—4w? <w2E§(Z2 + w?) + W22 <sin2 01p% + 0% + 255 sin? a&)

1/2
. . : 41wy
441 (a2 + sin? 045%)) ~ e , (6.8)
where X3 = ¢ + cos ). The WZ coupling for these configurations is
ct) e 1+ 2 5 ) costas : 6.9
00010203 51‘{’;‘{‘@ 3] COS (xS o1 COSO7 . ( . )

It can be verified that for & = 6 = ¢ = 1) = & = # = 0 all equations of motion for
an anti-brane are satisfied identically. These giant-like solutions carry non-zero angular
momentum given by

2

P, =2r?Pw?cos’ o, P, =27m%*cos?a. Py = 2m*1%w? cos® acos . (6.10)

The giant like solutions found here have H = 0. Note that Py|max = 212 12w?, P, lmax =
27214, and Pylmax = 271212w? which suggest a stringy exclusion principle at work.

6.1.2 Dual-giant probes

Now we look for solutions that are analogous to the dual giant gravitons in AdS in that
their world volume takes up an S® in the five-dimensional part of our geometry. Choosing

static gauge, our ansatz is
tZO'(), 920'1, ¢:O-2, ¢:O'3 (611)

with all other coordinates assumed to be functions of o only. Thus the DBI contribution

to the action follows from

5/2 1/2

3 2 3
v : 2 ¢ 2,2 2 ¢ :
\/—det hgiaj:ﬁsmal [w<8r+lw 1 &) — 4" +w”) g pi &i(dr+lwé)| . (6.12)

i=1 i=1

2In this section we quote the full action for completeness. There are terms that can be dropped consis-
tently from the action without changing the equations of motion for the class of solutions we are interested
in. We will drop such terms from now on to avoid clutter.
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Without loss of generality we have dropped terms involving d, B and 7 that do not con-
tribute to the equations of motion for the configurations we are about to study. The pull
back of the four-form potential is

4rw’
Cc(;(l)2710203 == [ l + l2 2<1 + ﬁ) ZMZ&] 3 Sino (613)

To find solutions we first note that since the Lagrangian depends only on {}’s putting
& = 0 would solve the & e.o.m . Setting & = 0 solves the equations of motion and gives

the Hamiltonian H = —L. We find for the momenta conjugate to the angular variables
— oL
P& 9 )
P, = 3wl (1 + @>u? . (6.14)

This means that Zl L P, = 3m2w?? (1 + 312) on our solutions. Furthermore we find that
H=0.

If we use the coordinates ¢ and ¢, which give the asymptotic geometry of AdSs x S°
in the standard global coordinates, then we see that the vanishing Hamiltonian actually
implies £ = —%J where J is the spin of the probe branes when measured in the new
coordinates. When one considers multiple configurations of dual-giants in AdSs x S® there
is an upper limit on their number given by the number of units of flux through the 5-
sphere 2§, P9). In our case too one expects that there is an upper limit on the number of
dual-giants.

6.2 Supersymmetry

Let us now investigate the kappa symmetry conditions for the configurations introduced
above.

6.2.1 Giant probes

For the solutions (6.7) we find the world-volume gamma matrices

r
LN (615
v = lcosall, (6.16)
72 = —lcosasino(—I'scoso; + (g cosa + I'7sina) sinoy) (6.17)
v3 = —lcosacosoi(I'gsino; + (I'gcosa + I'7sina) cos 1) , (6.18)

On the solution v—h = % 2031 cos* asin 3 cos 3. Thus, using equation -3) we get
I' =iseca[—2Tg Py (cosal'g — sinal'7) — cosaf . (6.19)

And hence

e = ie, (6.20)

for ¢ = P_n, n being the Killing spinor in Poincaré coordinates with P,n = 0. This
sets eér = 0. Hence these configurations are half-BPS with respect to the near-horizon
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preserving precisely the supersymmetries of the full black hole. The isometry preserved by
the brane can be determined by adopting a similar procedure as in section 4. The Killing
vector preserved by the brane is proportional to d; which is just the Hamiltonian. Equating
this to zero gives us the H = 0 condition obtained from the equations of motion.

6.2.2 Dual-giant probes
For the solutions (.11]) we find the world-volume gamma matrices

6.24

Yo = ;TFOP'F? (6.21)
v = g(sin o9l'y + cos 091's) , (6.22)
o = —4%(3@0 — 22Ty + wly), (6.23)

(6.24)

w
Y3 = COSO17Y9 — 5 sin o1 (cos 09I’y — sin 02I'3) .
On the solution /—h = “2’—?7“ sinoy. Using (B.3), we calculate

r= QL [CoPy (3wl — 2ATy + wl'o) + 2w] . (6.25)
w

With this we find I'e = —ie for e = P_n with n the Killing spinor in Poincaré coordinates
and P,n = 0, as in the previous case. Hence these probes are half-BPS with respect to the
near-horizon. As in the previous case, the Killing spinor bilinear implies H = 0, consistent
with the equations of motion. Thus both the solutions preserve only the supersymmetries
of the full black hole.

7. Global D-brane probes

In this section we exhibit some half-BPS D3-brane probes in the near horizon geometry in
global coordinates.
7.1 Solving the equations of motion

In global coordinates we can take the 4-form RR potential to be

i V3
2

_E[AMemeﬁs)A(eJr_A)Jrl( 23 >/\<*F+%A/\F>},
+

2 V3 [2ab w 2 2abp
F L ANF =22 122 234 “ 014 023 71
R 2[w<+2l2> ¢ tare (7.1)

7.1.1 Giant probes

cW = 4p "3 1 cot a8 A <€9 + lA)

We now exhibit a two classes of solutions to the DBI action of the D3-brane probes in

global coordinates. We first choose

T =00, B=o01, =02, & =03 (7.2)
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with the rest of the coordinates functions of og. The DBI contribution to the action follows
from

1 64p? 1 81 :
\/—dethg,o, = 8_wl2 cos® asin 23 [# cos®a + % (—8[2 sin? oy + 2w?(cos® a — 4))

+w? <16l2 — 160* sin? ozf% + 812w?sin® a1

. 1/2
+w?2? (—=81? — 4w? + w? cos? a))] . (7.3)
The WZ coupling is
(4) — 4 cost ) : w_QE 2 7.4
sorioaos = | €OS" acosoysinoy |€1 — TP + “lab| (7.4)

where, as before, X3 = <]5+ cos 6?1/.1 and without loss of generality we have dropped terms
involving p, &, 6 and ¥ which do not contribute to the equations of motion. One can verify

that ol )
. . w .

are solutions to the Lagrangian £ = —,/—det hy,o; & C(E-ﬁn@@ for any constant value of
a,v and 6, provided p > —p, for branes and p < p, for anti-branes where

3wab?
21

Pg =

One must take ¢ and 51 positive for an anti-brane and negative for a brane. The conserved
charges for these solutions are

92 2 4 2 2l3
qu — il‘l + w C082 Q, Pfl = 27T2l4 COS2 a, (76)
3 P+ g

with the above sign for branes and below for anti-branes. Note that P, is infinite at p = p,

while P, is independent of p. We will demonstrate later on that supersymmetry dictates
p = 0. For this, the maximum value of the momenta are Pjg|max = 2”;l4, P, lmax =

27214 again suggesting a stringy exclusion principle at work. It is easy to verify that the

Lagrangian vanishes and the Hamiltonian is given by
21 2w
H=—|P, —| P, 7.7
This is actually the relation expected for BPS objects. To see this one can verify that the

following Killing vector of the background

2\ 41 4

—0r + — —0, 7.8

3w + 3w? & (7.8)
is preserved by the probe brane solutions above for p = 0. This can be seen by considering
the bilinears of the supersymmetries preserved by the probe branes similar to those in
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section 4 and 5. Then identifying the generators 0,, 4 and O, with the charges H, P,
and P, respectively in eq. ([.§) and equating it to zero results in the BPS equation.
There is another class of solutions which have v # 0 as well. It is easy to verify that

.ol : 2nw
0=0 = 7.9
Cd=d=L, 4= (7.9)
and . 5
. .o . nw
T, Qb TIZ) o\’ 51 I\ (7 0)
are solutions to the action £ = —,/—det hy,, + nC® for n = +1 whenever
P = Pg- (7.11)
The solutions at 8 = 0 have
9 2l2 l2 3 2
Pe, = ndr?l* cos’a, Py= Py =1 T+ 3w p/pg) cos® a, (7.12)
3(1—p/pg)
and those at § = 7 have
21212 (12 + 3w?
P;, = ndn?l* cos’a, Py =-Py=n T (7 + 3w7p) pg) cos® a. (7.13)
3(1=p/py)
These configurations have vanishing Lagrangian and therefore their Hamiltonian is
l 2w 21 2w
H=—(|P, P, —| P, | = —|P, —| Py, |. 7.14

7.1.2 Dual-giant probes

Let us assume the most general ansatz (in static gauge) for a dual-giant graviton in global
coordinates:
T=o09, O0=01, ¢=o09, V=03, (7.15)

where all other embedding coordinates are functions of og. The DBI contribution to the
action may be written in the form

2
w5/2 ) 8/) 3 o :
‘/—dethgigj = 1—61811101<w —b—i-lw;,ui{i
3 l 1/2
—4(1% + w?) w<—1+122 2@) 25,]) . (7.16)
i=1 i=1

where haioj denotes the induced metric on the world volume of the dual giant. Without loss
of generality we have dropped terms involving ¢, 3 and p that do not affect the equations
of motion on the configurations we are about to study. The induced four-form is

3
4 w 2 Z 2 .
00('02710'20'3 = _g [l)\ (l +w ) + — w < 2l2> ,uzlé.l + — | sSinoq, (717)

30ne can express the Hamiltonian in manifestly gauge-invariant form in terms of the gauge-invariant
momenta II; = P; — A;, where A; is the effective particle gauge potential. To do so, one should fix the
constant appearing in the WZ term by demanding L — X;A; = 0. This effectively removes the piece coming
from the WZ term. In this case H = 2L [I14| + 22|11, |.
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where we have chosen to add a constant for convenience which does not change the equa-
tions of motion. Then one can verify that

=6 =§= ™ (7.18)

the equations of motion of the action £ = —,/—det hy,s; + C 4) are satisfied when

lab?

p < pdg = > (7.19)
These solutions have the following conserved charges
3wt + 412 (w? + wpl/(2ab?))
P;, = m? — (217 + w?)| p? 7.20
61 W 12 _4(A)pl/(2ab2) ( +w ) lu’l ( )

for i = 1, 2 and 3. Notice that these angular momenta diverge as the radial positions of
the dual-giants p approaches p4,. Furthermore this critical value of the radial coordinate
is different from what the giants see which is 3w?/I? times pdg- The Lagrangian evaluated
on the configurations again vanishes and so the Hamiltonian* is given by

2w
H:K(|P§1|+|P§2|+|P§3|) (7'21)

which also diverges at p = pgy. The same analysis can be repeated for branes with pg, —
—pdg and changing the signs of §;’s.
7.2 Supersymmetry

In this section we analyse the amount of supersymmetry preserved by the probes in global
coordinates.

7.2.1 Giant probes

First consider 1) = 0. The pull-back gamma matrices are given by

vo = fTg — <3Tp T %>F4 + (:I: ? — %)Fg + 4Tbsina(r7 cosa — I'gsina), (7.22)
m = lcosall, (7.23)
72 = —lcosasinoy (—coso1l's + sinoj(cosal'g +sinal'y)) , (7.24)
v3 = —lcosacosoy (sinoiI'g 4+ cos o1 (I'g cos v + 'y sina)) (7.25)

where the upper sign is for an anti-brane and the lower sign for a brane. Using these we
get

13 cos® arsi 6b 4 1

=2 Oi/S%Ul s o1 <i T + w—5b> <§ cos av + sin 041“79P}r’2 — cos aPJlr’2> , (7.26)

4The gauge-invariant form of the Hamiltonian as described in footnote E is given by H = ?—‘:\}(|Hgl| +
|H€2| + |H€3 |)
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where

1
pl2_ 2
+ 2

3 2\ ! 3 2
14 (22 + £ Floo+ (= 2L+ =) |,
l wab l aw

and can be shown to be a projector. We further define the orthogonal projectors to be

1 3 20\ ! 3 2
P2 l1- (24 L fTog+ (= F & — )T | -
2 l wab l aw

Hence, if we choose € = Pi’2n with P}r’277 = 0, n being the Killing spinor in global coordi-
nates, then it is easy to see that I'e = +ie and that the configurations are thus half-BPS
with respect to the near-horizon. We also see that the projectors are ill defined at p = %p,
where the upper sign is for a brane and lower for anti-brane. These are the same positions
where the equations are not solvable for the corresponding cases. We must further ensure
that Pj_’Qn = 0. First consider an anti-brane. Write

1
Pl = 5(1 + ATg9 + Bl'y)

and the Killing spinor as

e~ 3 cos T —i—ie% sin TF T4 e3 cos T ie”? sin TF .
= — — € — — — €
K % 9p 40 )0 % DT

= (f+ +ig+Tao)eg + (f- +ig-Tuo)eq , (7.27)

with p = bsinh x. Some useful relations are

2b 3 l

FOgE(:)t = :l:T < - §F49 + m)ﬁa: 5 (728)
2b (3 l

F0463: = iT (5 + —wabr49> 63: . (729)

We demand P}rn = 0 corresponding to Pln being preserved. Now we note that e(jf and
I'y9¢fl have the same chirality. This leads to the following equations on equating the
coefficient of cos g

2A 3bA
e X/2 (1 + —) ef = —eX/? (— + B) Tageq (7.30)
wa l
3bA 2A
eX/? (— + B> € = —eX/2 (1 + —>F4960 . (7.31)
l wa
These lead to the conclusion that p = 0 and eg = —I'y9¢y. It can be verified that these

conditions satisfy the equations obtained from the coefficients of sin 5; as well. The same
calculation can be repeated for the brane case. The conclusion is that the condition on the
constant spinors is 68' = *I'49¢, , the upper sign for brane and lower for anti-brane and
p=0.

The calculation for non-zero ¢ can be repeated in a similar manner. It turns out
that the world-volume gamma matrices are identical to the above case and hence the
supersymmetry analysis is identical to the one given there.
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7.2.2 Dual giants

The world-volume gamma matrices are

2 (3 l 4b
m = g (cos ¢I'3 + sin ¢I'y) (7.33)
w [ w l
=— | =T —T 7.34
7 2l<2 T 4> (7:34)
v3 = cos Bvyo + g sin 6 (sin ¢I's — cos ¢I'y) , (7.35)

where the upper sign is for brane and lower for anti-brane. After some algebra one can
derive the following simple expression for the Kappa-symmetry projection matrix

7 w\2 .
I'= N <§> sin 0(ho2 — Y072) , (7.36)
with ol A l
w w
D I =rea b “Too + —T .
ho2 — Y02 57 [(wP:Fa> a9+ f (2 00+ 04” (7.37)

We note that

wlsin? oq

412a2?

6

w\4 |
—dethl = (5) sin? 0 (hoa1 — yoy2)* = (p % pag)*1, (7.38)

the upper sign is for brane and lower for anti-brane. We can thus form the projectors
Py = (1 £4I'). From the above we see that Py commutes with T4 1'% and I'7.
Furthermore, the projectors become ill defined at p = p4y, which is the same point where
the angular momenta blow up. The condition on the constant spinors are derived as follows:
For branes, we want to preserve I'e = —ie. Let us write I' = ¢(AT'49 + BT g9 + CTo4) where

Zyi—h sino;. Then after some tedious algebra we get

r 3B 20\ . (2B 3bC N
P <f+<A‘ N m) ‘29+<@ i T)) Faocy
2B 3bC\ 3Bb 20\ _
+|l—fl—+—F ) —ig | A+—+—) | g

wa l l wa

B 3vC 3Bb 2C
+fe(2—+ =) —igs [ A+ === )
wa l l wa

=3

3B 2C 2B 3bC
A+ — - — ig— | — + —— | | Tgo€q - .
+ (f ( + ] wa) + 19 (wa + I >> 49€0 (7.39)
Now we equate this to —%e. Equating the cos 5; piece
3B 2C i 2B 3C i\ _

2= —f (2222 4

I+ (A ] + wa>r49€0 f <wa + I C>50 ) (7 0)
2B 3bC i\ 3B 2C _

e e =—f|A+——-— T . 7.41
T+ (wa * l + c>€0 / ( + l wa) 49%0 ( )
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We can read off A, B,C from equation (7.37). This tells us that p = 0 and ¢ = T49¢g .
One can check that the other conditions arising from sin 5; are also satisfied. Thus we
conclude that, as for the giant case, supersymmetric dual giants also satisfy p = 0 and

ear = +I'y9¢ , the upper sign for branes and lower for anti-branes.

Conserved Killing vector
The calculation of the Killing vector that the giant and dual giants preserve is now straight-
forward. Imposing eér = *I'49¢;, we get the Killing spinor to simplify to
e = e 5 (1 £ Tyg)el . (7.42)
Using this we find
eleé, = 2 (—Toéo F Doés & T4éy) €o - (7.43)
Now using (p.23), the Killing vector becomes

2) 21

U= —%eo T 3wab

&4+ g, (7.44)

which leads to 5 o
w
H=—|P, — | Pyl . 7.45
P+ 2Ry (7.45)

This is the expected BPS relation for both giants and dual giants.

8. Conclusion

In this paper, we considered the near-horizon geometry of the simplest of the super-
symmetric AdSs black holes with two equal angular momenta and a single U(1) electric
charge. It was shown that the isometry supergroup of the IIB uplift of this black hole is
SU(1,1]1) x SU(2) x U(3). This was achieved by explicitly constructing the Killing spinors
of the geometry and then considering the bilinears following [[[q]. The near-horizon geom-
etry has a deformed 3-sphere S® and a deformed 5-sphere S° with a fibration of the time
coordinate of AdSy over them. We considered both Poincaré and global-like coordinates
for the AdSs part of the geometry. We found that the number of supersymmetries of the
near-horizon geometry of these black holes is twice that of the full solution.

We then exhibited several D3-brane configurations in this geometry that are analogous
to the giant and dual-giant gravitons of the AdS5 x S° background. The dual-giant like D3-
branes wrap the deformed-S® and the giant like objects wrap an S inside the deformed-S°
part of the geometry. In the Poincaré coordinates the branes do not rotate. They still
carry non-zero angular momenta. In global coordinates the branes have to rotate in order
to satisfy the equations of motion. All the configurations considered in Poincaré coordinates
preserve two of the four supersymmetries. These two supersymmetries are simply those of
the full black hole solution restricted to the near-horizon geometry.

We showed that the probes in global coordinates preserve two of the four supersym-
metries of the background when placed at the centre p = 0 of AdSs and so are half-BPS.
However, the configurations at a generic non-zero p do not preserve any supersymmetries.
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The D3-brane probes at generic p exhibit interesting features. In particular, they all sat-
isfy a BPS-like energy condition and see a critical value of the radial position where their
angular momenta diverge. It will be interesting to understand the physics behind this be-
haviour. We expect there to be more giant-type probe branes like those in [Bf]. There is a
duality between configurations of giants and dual-giants in AdSs x S°. It will be interesting
to see if such a duality holds in this case as well.

The results of this paper should help in counting microstates of the black hole under
consideration as mentioned in the introduction. To make further progress in this direction
one has to classify all the BPS objects in the global coordinates with a given set of super-
symmetries. Then one should be able to quantise them using methods similar to [13, [4]
(see also [B3-B]) and count the different configurations with fixed quantum numbers.

There are several generalisations of the black holes considered here [f, ], 4] which have
non-equal angular momenta in AdSs directions and non-equal R-charges in S directions
(with one condition among them). However, we suspect that their near-horizon geometries
again preserve four supersymmetries. The reason is that the generators of the bosonic part
of the isometry group which are responsible for the generalisation do not participate in the
supersymmetric part of the full supergroup of isometries. We expect that the near-horizons
of the generalisations have the same supergroup part SU(1,1|1) of the isometries but with
the bosonic parts SU(2) and U(3) broken to some subgroups of them. It will be interesting
to establish this in detail.

Following Strominger et al [§, [J] one can ask what is the holographically dual conformal
quantum mechanics of the string theory in the near-horizon geometry of the Gutowski-
Reall black holes considered here. Our superisometries should be an important input in
constructing the Lagrangian for such a quantum mechanics. One also expects that there
are some small black holes with more supersymmetries than the Gutowski-Reall black
holes (see [P§] for instance). Counting the microstates in the near-horizon geometry of the
Gutowski-Reall black holes might capture the entropies of the small black holes as well as
in B7] in an analogous context. We hope to return to some of these questions in the future.
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