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1. Introduction

Asymptotically AdS5, rotating, electrically charged supersymmetric black holes of minimal

D = 5 gauged supergravity with regular horizons were first constructed by Gutowski

and Reall in [1, 2]. These solutions have been further generalised in [3 – 6]. When lifted

to 10-dimensional solutions of type IIB, these geometries asymptote to the maximally

supersymmetric AdS5 × S5 solution and preserve just two of the 32 supersymmetries [7].

One of the important outstanding problems in string theory is to account for the entropy of

these black holes both from the string theory and the holographic boundary gauge theory

points of view.
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The standard way of counting the microstates of a supersymmetric black hole in string

theory is to count the BPS states of the D-brane system in the asymptotic geometry of the

black hole. In recent times it has been realised that the entropy of extremal black holes

depends just on the string theory in the near horizon geometry called the attractor geom-

etry of the black hole. Therefore, the Bekenstein-Hawking-Wald entropy should also be

related to a certain number of appropriate BPS states in the attractor geometry or those

in the holographically dual quantum mechanics. This program has been demonstrated

successfully in the context of 4-dimensional extremal black holes in [8, 9] (see also [10]

and [11]). For the supersymmetric AdS5 black holes of [1, 2] , one expects two complemen-

tary approaches to count the microstates as well: (1) count the BPS states with the right

charges in the AdS5 × S5 background, (2) count an appropriate set of BPS states in the

near-horizon geometry. The problem of counting BPS states with just two supersymme-

tries in AdS5 ×S5 geometry is a hard problem (see [12 – 14] where the problem of counting

the BPS states with four supersymmetries was addressed, and [15] where a fermi-surface

model was proposed to achieve qualitative agreement with the counting). In this paper,

we initiate addressing the problem using the second approach.

We consider the single-parameter black holes with equal angular momenta [1] in AdS5

directions and a single U(1) electric charge. When the angular momentum vanishes, this

solution reduces to AdS5. We lift the near-horizon geometry of the black hole to a solution

of type IIB supergravity in ten dimensions. By studying the integrability condition of the

Killing spinor equations, it is found that the number of supersymmetries of the near-horizon

geometry is four, which is twice the number of supersymmetries of the full black hole. We

explicitly construct the Killing spinor in both Poincaré and global coordinates. Using the

Killing spinor solution and the technique of [16, 17], we show that the superisometry group

is SU(1, 1|1). We demonstrate that the full isometry supergroup of the 10-dimensional

near-horizon solution is SU(1, 1|1) × SU(2) × U(3). As one expects for an extremal black

hole there is an AdS2 factor in the near-horizon geometry and we consider both Poincaré

and global coordinates for it.

We then initiate the study of probe branes in the near-horizon geometry along the

lines of [11] in the context of BMPV back holes [18]. Two sets of probe D3 branes are

found which preserve half of the near-horizon supersymmetries. These are the analogues of

giant gravitons [19] and dual giant gravitons [20, 21] in AdS5×S5. The probes in Poincaré

coordinates are static and have vanishing Hamiltonians. They still carry non-zero angular

momenta because of the rotation of the background. The probes in global coordinates

rotate and have non-zero angular momenta and Hamiltonians.

The paper is organised as follows. In section 2, we lift the near horizon solution to

ten dimensions. In section 3, we solve the Killing spinor equation explicitly in Poincaré

coordinates. In section 4, we derive the isometry supergroup of the geometry. In section 5,

we consider the problem from the point of view of global coordinates and solve the Killing

spinor equation in these coordinates. In section 6, we initiate the study of probe branes in

Poincaré coordinates while in section 7, the probe branes are studied in global coordinates.

We conclude with a brief discussion in section 8.
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2. The black hole and its near-horizon geometry

The metric of the five-dimensional solution with equal angular momenta is specified by the

fünfbein [1]

e0 = F
(

dt + ΨσL
3

)

, e1 = F−1

(

1 +
2ω2

l2
+

r2

l2

)− 1

2

dr ,

e2 =
r

2
σL

1 , e3 =
r

2
σL

2 , e4 =
r

2l

√

l2 + 2ω2 + r2σL
3 . (2.1)

The right-invariant one-forms on SU(2) are σL
1 = sin φdθ − sin θ cos φdψ, σL

2 = cos φdθ +

sin θ sin φdψ and σL
3 = dφ + cos θ dψ, where 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π, 0 ≤ φ ≤ 4π. They

satisfy dσL
i = −1

2εijkσ
L
j ∧ σL

k with ε123 = 1. Furthermore

F = 1 − ω2

r2
, Ψ = −ηr2

2l

(

1 +
2ω2

r2
+

3ω4

2r2(r2 − ω2)

)

, (2.2)

with η = ±1 and ω is constant. The 1-form gauge potential is given by

A =

√
3

2

[

Fdt +
ηω4

4lr2
σL

3

]

. (2.3)

We choose η = 1 from here on. This solution asymptotes to global AdS5 and in this limit

reads

e0 = dt − r2

2l
σL

3 , e1 =
dr

√

1 + r2

l2

, e2 =
r

2
σL

1 , e3 =
r

2
σL

2 , e4 =
r

2

√

1 +
r2

l2
σL

3 (2.4)

with F = dA = 0. This can be put into the standard form by writing φ̃ = φ + 2t
l and t̃ = t

which imply ∂
∂t = ∂

∂t̃
+ 2

l
∂
∂φ̃

. The black hole solution carries an electric charge under the

U(1) gauge field given by

Q =
1

4πG

∫

S3
∞

?F =

√
3πω2

2G

(

1 +
ω2

2l2

)

. (2.5)

where G is the 5-dimensional Newton’s constant. The black hole carries an angular mo-

mentum given by

J =
3πω4

8lG

(

1 +
2ω2

3l2

)

, (2.6)

while the entropy is

SBH =
π2

2G
ω3

√

1 +
3ω2

4l2
, (2.7)

which may be written as [24]

SBH = π

√

l2Q2 − 2πl3

G
|J | = π

√

l2Q2 − 4N2 |J | , (2.8)
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in terms of the electric charge and angular momentum of the black hole. Here N2 = πl3

2G .

The near-horizon limit of this geometry is

e0 =
2r

ω
dt − 3ω2

4l
σL

3 , e1 =
ωl

2λ

dr

r
, e2 =

ω

2
σL

1 , e3 =
ω

2
σL

2 ,

e4 =
ω

2l
λ σL

3 , A =

√
3

2

(

2r

ω
dt +

ω2

4l
σL

3

)

=

√
3

2

(

e0 +
2ω

λ
e4

)

. (2.9)

Here we have defined

λ =
√

l2 + 3ω2 . (2.10)

The gauge field strength, F = dA is given by

F =

√
3

2l

[

3e14 − e23 − 2

ω
λ e01

]

,

?F =

√
3

2l

[

3e023 − e014 +
2

ω
λ e234

]

. (2.11)

The equations of motion are

Rab − 2FacF
c

b +
1

3

(

FcdF
cd +

12

l2

)

ηab = 0,

d ? F +
2√
3
F ∧ F = 0. (2.12)

where our convention for the Hodge dual is ε01234 = 1. We will now lift this to a ten-

dimensional solution. The lift formula is [25] (see also [26])

ds2
10 = ds2

5 + l2
3

∑

i=1

[

(dµi)
2 + µ2

i

(

dξi +
2

l
√

3
A

)2
]

,

F (5) = (1 + ∗(10))

[

−4

l
vol(5) +

l2√
3

3
∑

i=1

d(µ2
i ) ∧ dξi ∧ ∗(5)F

(2)

]

, (2.13)

where µ1 = sin α, µ2 = cos α sin β, µ3 = cos α cos β with 0 ≤ α ≤ π/2, 0 ≤ β ≤ π/2,

0 ≤ ξi ≤ 2π and together they parametrise S5. Note that we define the Hodge star of a

p-form ω in n-dimensions as ∗(n)ωi1...in−p
= 1

p!εi1...in−p
j1...jpωj1...jp , with ε0123456789 = 1 and

ε01234 = 1 in an orthonormal frame. The ten-dimensional geometry is specified by (2.9)

together with

e5 = l dα, e6 = l cos α dβ,

e7 = l sin α cos α [dξ1 − sin2 β dξ2 − cos2 β dξ3],

e8 = l cos α sin β cos β [ dξ2 − dξ3],

e9 = − 2√
3
A − l sin2 αdξ1 − l cos2 α (sin2 β dξ2 + cos2 β dξ3). (2.14)
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and the five form [25, 26, 7]

F (5) = −4l−1[e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 + e5 ∧ e6 ∧ e7 ∧ e8 ∧ e9]

+
2√
3
(e5 ∧ e7 + e6 ∧ e8) ∧ (∗(5)F

(2) − e9 ∧ F (2))

= −4

l
(e01234 + e56789) − 1

l
(e57 + e68) ∧

[

− 3e023 + e014 − 2

ω
λ e234

+e9 ∧
(

3e14 − e23 − 2

ω
λ e01

)]

. (2.15)

3. The Killing spinor

In this section, we will solve the Killing spinor equation. The strategy will be to use

the integrability condition to simplify the equations on a projected subspace. The ten-

dimensional Killing spinor equation is [7]

Dmε +
i

1920
Γn1n2n3n4n5ΓmF (5)

n1n2n3n4n5
ε = 0 . (3.1)

We record the useful identity

i

1920
Γn1n2n3n4n5F (5)

n1n2n3n4n5
Γm =

i

4l

[

Γ01234 −
1

4
(Γ57 + Γ68)

(

3Γ023 − Γ014 −
2λ

ω
Γ234

)]

×(1 + Γ11)Γm

≡ 1

2
M(1 + Γ11)Γae

a
m . (3.2)

Here m is a spacetime index while a is a tangent-space index. The integrability condition

is [7]

[

Rmns1s2
− 1

48
F (5)

ms1r1r2r3
F (5) r1r2r3

ns2

]

Γs1s2ε

+

[

i

24
∇[mF

(5)
n]s1s2s3s4

+
1

96
F (5)

mnr1r2s1
F (5)r1r2

s2s3s4

]

Γs1s2s3s4ε = 0 . (3.3)

Using a computer algebra program it can be shown that these impose the constraints

iΓ0149ε = Γ2357ε = Γ2368ε = −Γ5678ε = −ε , (3.4)

Γ23ε = Γ57ε = Γ68ε = −iε . (3.5)

Of these only three are independent which may be chosen to be

Γ0149ε = iε , Γ23ε = −iε , Γ57ε = −iε . (3.6)

From these projections it follows that the solution in (2.13), (2.15) preserves at most 4

supersymmetries of the possible 32. After some tedious but straightforward algebra, one
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can verify that on the constrained subspace the components of the Killing spinor equation

simplify to:

(

∂t −
4iλr

ω2l
Γ4Γ0P+

)

ε = 0 , (3.7)

(

∂r +

[

− 3

2λ

ω

2r
Γ04 +

1

2r
Γ09 −

3

2λ

ω

2r
Γ49

])

ε = 0 , (3.8)

∂φε = 0 , ∂θε = 0 , ∂ψε = 0 , (3.9)

∂αε = 0 , ∂βε = 0 , (3.10)
(

∂ξj
+

i

2

)

ε = 0 , for j = 1, 2, 3 , (3.11)

where we define the projectors

P± =
1

2
(1 ± Γ09) ,

so that P+P− = 0 = P−P+. All angular equations can be easily solved. This leads to the

Killing spinor ansatz

ε = e−
i
2
(ξ1+ξ2+ξ3)ε(r, t) . (3.12)

Then the solution to the t equation is

ε(r, t) = e
2iλrt

ω2l
M1εr(r) , (3.13)

where M1 = −(Γ49 + Γ04) = −Γ49(1 + Γ09) = −2Γ49P+ and satisfies M2
1 = 0. Plugging

this into the r equation leads to

∂rεr =
3ω

2λr
Γ49P+εr −

1

2r
(P+ − P−)εr . (3.14)

Now writing εr = ε+
r + ε−r such that Γ09ε

± = ±ε± we get

∂rε
+
r = − 1

2r
ε+
r , (3.15)

∂rε
−
r =

3ω

2λr
Γ49ε

+
r +

1

2r
ε−r . (3.16)

The first of these immediately leads to

ε+
r =

1√
r
ε+
0 , (3.17)

where ε+
0 is a constant positive chirality spinor. Plugging this into the second equation

leads to

ε−r =
√

rε−0 − 3ω

2λ
√

r
Γ49ε

+
0 , (3.18)

where ε−0 is a constant negative chirality spinor. Thus the complete Killing spinor is

ε = e−
i
2
(ξ1+ξ2+ξ3)

(√
rε−0 +

1√
r

(

1 − 4iλrt

ω2l
Γ49P+

)(

1 − 3ω

2λ
Γ49

)

ε+
0

)

. (3.19)
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Here ε±0 are subjected to the same projection conditions as ε. The novelty here compared to

the full black hole is the appearance of the other chirality ε+
0 in the solution. Alternatively,

this result can be expressed compactly as:

ε = e−
4iλrt

ω2l
Γ49P+e( 3ω

2λ
Γ49P+− 1

2
Γ09) ln rε0 . (3.20)

It is sometimes useful to split the solution in terms of Γ09 chiralities:

ε+ = e−
i
2
(ξ1+ξ2+ξ3) 1√

r
ε+
0 ,

ε− = e−
i
2
(ξ1+ξ2+ξ3)

(√
rε−0 − 1√

r

(

3ω

2λ
+

4iλrt

ω2l

)

Γ49ε
+
0

)

. (3.21)

Thus we conclude that the 10-dimensional lift of the near-horizon geometry of the black

hole under consideration preserves precisely four supersymmetries with the explicit Killing

spinors in eqs. (3.21). We next turn to computing the isometry superalgebra of this geom-

etry.

4. Isometry supergroup

In the present section we shall need the basis vectors dual to the ten-dimensional frame of

the near-horizon geometry in Poincaré coordinates. These are:

ẽ0 =
ω

2r
∂t −

1

l
(∂ξ1 + ∂ξ2 + ∂ξ3) , ẽ1 =

2λr

lω
∂r , (4.1)

ẽ2 =
1

ω
(2 sin φ∂θ + 2cot θ cos φ∂φ − 2 cos φ cosec θ∂ψ) , (4.2)

ẽ3 =
1

ω
(2 cos φ∂θ − 2 cot θ sin φ∂φ + 2 sin φ cosec θ∂ψ) , (4.3)

ẽ4 =
3ω2

4λr
∂t +

2l

ωλ
∂φ − 2ω

λl
(∂ξ1 + ∂ξ2 + ∂ξ3) , ẽ5 =

1

l
∂α , ẽ6 =

1

l
sec α∂β , (4.4)

ẽ7 =
1

l
(cot α∂ξ1 − tan α∂ξ2 − tan α∂ξ3) , ẽ8 =

1

l
(cot β sec α∂ξ2 − tan β sec α∂ξ3) ,(4.5)

ẽ9 = −1

l
(∂ξ1 + ∂ξ2 + ∂ξ3) . (4.6)

Following the prescription in [16, 17], we now turn to the computation of the Killing

spinor bilinears ε̄Γiε which are Killing vectors. For the ten-dimensional complex Weyl

representation of definite Γ09-chirality, one can show that

ε̄±Γaε± = 0 , (4.7)

unless a = 0 or a = 9. Conversely

ε̄∓Γaε± = 0 , (4.8)

if a = 0 or a = 9. Define

c = −3ω

2λ
− 4iλrt

ω2l
. (4.9)
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First consider a = I where I 6= 0 or 9. We have

ε̄ΓIε = ε̄−0 ΓIε+
0 + ε̄+

0 ΓIε−0 +
1

r
ε̄+
0 (cΓIΓ49 − c∗Γ49Γ

I)ε+
0 . (4.10)

Next consider a = z where z = 0 or 9. This gives

ε̄Γzε = rε̄−0 Γzε−0 + ε̄−0 cΓzΓ49ε
+
0 − ε̄+

0 c∗Γ49Γ
zε−0 +

1

r
ε̄+
0 (Γz − cc∗Γ49Γ

zΓ49)ε
+
0 . (4.11)

Thus we have,

(ε̄Γaε)ẽa = ε̄−0 Γ0ε−0 r(ẽ0 − ẽ9) + ε̄−0 Γ4ε
+
0 (c(ẽ0 − ẽ9) + ẽ4 + iẽ1) + ε̄−0 ΓAε+

0 ẽA

+ε̄+
0 Γ4ε

−
0 (c∗(ẽ0 − ẽ9) + ẽ4 − iẽ1) + ε̄+

0 ΓAε−0 ẽA

+ε̄+
0 Γ0ε+

0

1

r
(ẽ0 + ẽ9 + (c + c∗)ẽ4 − i(c − c∗)ẽ1 + cc∗(ẽ0 − ẽ9))

+ε̄+
0 Γ49Γ

Aε+
0

1

r
(c − c∗)ẽA , (4.12)

where A takes all values from 2 to 8 except 4. The terms involving A vanish as we show

now. Note that the spinor ε±0 can be written as (1 + iΓ23)(1 + iΓ57)(1 + iΓ68)ε0/8 so that

we may always pull a suitable one of these projectors through ΓA which then changes its

chirality and annihilates the conjugate on the left. We have therefore shown that there are

four independent coefficients of the form ε̄±0 Γaε±0 contained in the Killing spinor bilinears.

This demonstrates that there are four bosonic generators in the superisometry group. In

other words, each of these generators corresponds to the coefficient of a certain linear

combination of z1z
∗
1 , z1z

∗
32, z∗1z32 and z32z

∗
32 where z1, z32 are taken as the two independent

complex components of the Killing spinor. Thus the independent Killing vectors are:

k(1) = r(ẽ0 − ẽ9) , (4.13)

k(2) = c(ẽ0 − ẽ9) + ẽ4 + iẽ1 , (4.14)

k(3) = c∗(ẽ0 − ẽ9) + ẽ4 − iẽ1 , (4.15)

k(4) =
1

r
(ẽ0 + ẽ9 + (c + c∗)ẽ4 − i(c − c∗)ẽ1 + cc∗(ẽ0 − ẽ9)) . (4.16)

These vectors can be easily verified to be Killing. Expressed in the holonomic frame these

are:

k(1) =
ω

2
∂t , (4.17)

k(2) =
−2iλ

ωl
(t∂t − r∂r) +

2l

ωλ
∂φ − 2ω

λl
∂ξ , (4.18)

k(3) =
2iλ

ωl
(t∂t − r∂r) +

2l

ωλ
∂φ − 2ω

λl
∂ξ , (4.19)

k(4) =
ω(3l2 + λ2)

8λ2

1

r2
∂t + 8

λ2

ω3l2
t2∂t −

16λ2

l2ω3
rt∂r −

6l

λ2

1

r
∂φ − 2l

λ2

1

r
∂ξ . (4.20)

All these Killing vectors are null. Rescaling k(j) by 2iλ
ωl and defining 1

2 (k(2) − k(3)) = J ,
1
2 (k(2) + k(3)) = Z, k(1) = E+, k(4) = E−, we get the non-zero commutators

[

J , E±]

= ±E± , [J , Z] = [Z,E±] = 0 ,
[

E+, E−]

= 2J . (4.21)
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This is the algebra sl(2, R) ⊕ u(1) where E±,J are the generators of sl(2, R) and Z is the

generator of the u(1) R-symmetry. Just as there is a bosonic charge QB(k) associated with

each isometry k of the solution, to each Killing spinor ε, there corresponds a fermionic

charge QF (ε). The algebra of these is encoded in the decomposition of the bilinears con-

structed above in terms of the bosonic charges [16, 17] (see also [22, 23]). To extract the

decomposition in a convenient form, we define the two linearly independent Killing spinors

ε(1) =
1√
r
e−

i
2
(ξ1+ξ2+ξ3)

[

ε+
0 + cΓ49ε

+
0

]

(4.22)

ε(2) =
√

re−
i
2
(ξ1+ξ2+ξ3)ε−0 . (4.23)

We obtain the following linearly independent bilinears
(

ε̄(2)Γaε(1)
)

ẽa = (ε̄−0 Γ4ε+
0 ) k(2) ,

(

ε̄(2)Γaε(2)
)

ẽa = (ε̄−0 Γ0ε−0 ) k(1)

(

ε̄(1)Γaε(2)
)

ẽa = (ε̄+
0 Γ4ε−0 ) k(3) ,

(

ε̄(1)Γaε(1)
)

ẽa = (ε̄+
0 Γ0ε+

0 ) k(4), .

(4.24)

Let us define the fermionic generators associated to the Killing spinors as follows

ε(1) → Q(1) ε(2) → Q(2) . (4.25)

Then it immediately follows from (4.24) that

{

Q̄(2), Q(1)
}

= Z + J ,
{

Q̄(1), Q(2)
}

= Z − J ,
{

Q̄(2), Q(2)
}

= E+ ,
{

Q̄(1), Q(1)
}

= E− .

(4.26)

All other odd-odd anti commutators are zero. These are in the standard sl(2|1) form [27].

In addition to k(1), . . . , k(4), there are also bosonic isometries of this solution which are not

associated with the supergroup. To this end it can also be verified that the left-invariant

vector fields (which generate right translations)

ξR
1 = − sinψ∂θ − cot θ cos ψ∂ψ + cos ψcosec θ∂φ ,

ξR
2 = cos ψ∂θ − cot θ sin ψ∂ψ + sinψcosec θ∂φ ,

ξR
3 = ∂ψ , (4.27)

satisfying [ξR
i , ξR

j ] = −εijkξ
R
k are Killing, reflecting the su(2)R isometries of the squashed

S3 of the near-horizon region. In addition to these we expect there to be more bosonic

isometries coming from the S5 part of the geometry that preserve the 1-form i
∑3

k=1 z̄i dzi

where zi = lµie
iξi as before with µ1 = sinα, µ2 = cos α sin β and µ3 = cos α cos β. The

following can be seen to be Killing vectors of our geometry.

J13 + J24 = − cos ξ12[sin β ∂α − tan α cos β ∂β] + sin ξ12[cot α sin β ∂ξ1 + tan α csc β ∂ξ2 ],

J14 − J23 = sin ξ12[sin β ∂α − tan α cos β ∂β] + cos ξ12[cot α sin β ∂ξ1 + tan α csc β ∂ξ2 ],

J15 + J26 = − cos ξ13[cos β ∂α + tan α sin β ∂β] + sin ξ13[cot α cos β ∂ξ1 + tan α sec β ∂ξ3 ],

J16 − J25 = sin ξ13[cos β ∂α + tan α sin β ∂β] + cos ξ13[cot α cos β ∂ξ1 + tan α sec β ∂ξ3 ],

J35 + J46 = − cos ξ23 ∂β + sin ξ23[cot β ∂ξ2 + tan β ∂ξ3 ],

J36 − J45 = sin ξ23 ∂β + cos ξ23[cot β ∂ξ2 + tan β ∂ξ3 ],

J12 = ∂ξ1 , J34 = ∂ξ2 , J56 = ∂ξ3 . (4.28)
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where ξij = ξi − ξj. These form the algebra u(3). The algebra can be calculated using

[Jij , Jmn] = δinJjm + δjmJin − δimJjn − δjnJim. (4.29)

We have checked that the Lie-derivative of the five form along all the above Killing vectors

vanishes. Thus we have demonstrated that the isometry superalgebra of our near-horizon

geometry is su(1, 1|1) ⊕ su(2) ⊕ u(3). Hence, we conclude that the isometry supergroup is

SU(1, 1|1) × SU(2) × U(3).

5. Global coordinates

We will now consider global coordinates. Let us first rewrite the five-dimensional part of

the metric in Poincaré-like coordinates as follows:

ds2 = −
4(1 + 3ω2

l2
)

ω2(1 + 3ω2

4l2
)
r2 dt2 +

ω2

4(1 + 3ω2

l2
)

dr2

r2
+

ω2

4

(

(σL
1 )2 + (σL

2 )2
)

+
ω2

4

(

1 +
3ω2

4l2

)

[

σL
3 +

6

ωl
(

1 + 3ω2

4l2

)r dt

]2

. (5.1)

We perform the coordinate transformation1

t =

√

b2 + ρ2 sin τ
b

a[−ρ +
√

b2 + ρ2 cos τ
b ]

, r = −ρ +
√

b2 + ρ2 cos
τ

b
, (5.2)

φ̃ := φ +
6ab3

ωl
log

b +
√

b2 + ρ2 sin τ
b

b cos τ
b − ρ sin τ

b

. (5.3)

Here a2 = 4λ2

ω2l2(1+ 3ω2

4l2
)

and b2 = ω2l2

4λ2 . This brings the metric into the form

ds2 = −
(

1+
ρ2

b2

)

dτ2+
dρ2

1 + ρ2

b2

+
ω2

4

(

(σ̃L
1 )2+(σ̃L

2 )2
)

+
ω2

4

(

1+
3ω2

4l2

)(

σ̃L
3 −

6ab

ωl
ρ dτ

)2

, (5.4)

where σ̃L
i ’s have φ̃ in their definition. The AdS2 part of the metric is now manifestly in

global form. The gauge field reads

A = −
√

3

2

[

ω2

4l
σ̃L

3 − 2

ωab
ρ dτ

]

, (5.5)

after a gauge transformation. We choose the tangent space basis to be

e0 = f dτ, e1 = f−1dρ, e2 =
ω

2
σ̃L

1 , e3 =
ω

2
σ̃L

2 , e4 =
ω

2ab

(

σ̃L
3 − 6ab

ωl
ρ dτ

)

. (5.6)

where f =
√

1 + ρ2

b2
. For notational convenience we will drop the tilde from now. In this

basis the field strength and its Hodge dual associated with A are

F = −
√

3

2

[

2

ωab
e01 − 1

l
e23

]

, ?F =

√
3

2

[

2

ωab
e234 +

1

l
e014

]

. (5.7)

1To cover the full range of r, t the range of ρ and τ should be between −∞ to ∞.
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These satisfy the equation d?F + 2√
3
F ∧F = 0. After the 10-dimensional lift, the five-form

reads

F (5) = −4

l
(e01234 + e56789) +

1

l

(

e57 + e68
)

∧
[

e014 − e239 +
2l

ωab

(

e234 + e019
)

]

. (5.8)

The projection conditions following from integrability in global coordinates turn out to be:

Γ0149ε = −iε , Γ2357ε = Γ2368ε = Γ5678ε = ε , (5.9)

Γ23ε = iε , Γ57ε = Γ68ε = −iε . (5.10)

showing, again, that at most four supersymmetries are preserved by the near-horizon ge-

ometry. Note that these conditions are almost the same as, but nevertheless different from,

the corresponding ones in Poincaré coordinates. The flux contributes

i

1920
Γn1n2n3n4n5F (5)

n1n2n3n4n5
Γm =

i

4l

[

Γ01234 +
1

4
(Γ57 + Γ68)

(

− Γ014 +
2l

ωab
Γ234

)]

×(1 + Γ11)Γm

≡ 1

2
MG(1 + Γ11)Γae

a
m (5.11)

to the Killing spinor equation. Here m is a spacetime index while a is a tangent-space

index. Using these we get the following simplified component equations:

(

∂τ − iρ

2b2
Γ49 + f

(

1

ωab
Γ19 +

3i

2l
Γ09

))

ε = 0 , (5.12)

(

∂ρ +
1

lf
M̂

)

ε = 0 , (5.13)

∂θε = 0 , ∂φε = 0 , ∂ψε = 0 , (5.14)

∂αε = 0 , ∂βε = 0 , (5.15)
(

∂ξj
+

i

2

)

ε = 0 , for j = 1, 2, 3 . (5.16)

where M̂ = 2b
l (3

2Γ04 + l
ωab Γ09), which satisfies M̂2 = 1. Again, all the angular equations

are trivial and may be integrated immediately. Let us now solve the ρ equation to write

ε(τ, ρ) = e−
1

2
sinh−1 ρ

b
M̂ ε(τ) , (5.17)

where sinh−1 x = log[x +
√

1 + x2]. Then to solve the τ equation let us first rewrite the

equation in the following form

∂τ ε =
i

2b
[
ρ

b
Γ49 − f M̂Γ49]ε , (5.18)

where we make use of the projection Γ0149ε = iε to eliminate Γ19 in favour of Γ04. Then it

is straightforward to verify that the spinor

ε(τ, ρ) = e−
1

2
sinh−1 ρ

b
M̂e−

i
2
M̂Γ49

τ
b ε0 , (5.19)
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where ε0 satisfying all the projections conditions is a solution to the Killing spinor equation.

This solution can be split in terms of M̂ε±0 = ±ε±0 as

ε =

(

e−
χ

2 cos
τ

2b
+ ie

χ

2 sin
τ

2b
Γ49

)

ε+
0 +

(

e
χ

2 cos
τ

2b
− ie−

χ

2 sin
τ

2b
Γ49

)

ε−0 , (5.20)

where ρ = b sinhχ.

Supergroup in global coordinates

The supergroup in global coordinates can be computed in the same manner as was done

in the Poincaré coordinates. The basis vectors dual to the global vielbein are the same as

in Poincaré coordinates with the exception of

ẽ0 =
1

f
∂τ +

6ab

lωf
ρ∂φ − 2ab

ωlf
ρ(∂ξ1 + ∂ξ2 + ∂ξ3) , ẽ1 = f∂ρ , (5.21)

ẽ4 =
2ab

ω
∂φ +

ωab

2l2
(∂ξ1 + ∂ξ2 + ∂ξ3) . (5.22)

In the same way as in section 4, one can use the constraints from the integrability condition

to show that the only nonzero bilinears are (ε̄Γ0ε),(ε̄Γ1ε), (ε̄Γ4ε) and (ε̄Γ9ε). In addition

we can use the condition M̂ε±0 = ±ε±0 to derive the following relations
(

ε̄±0 Γ9ε
±
0

)

= 2l
3ωab (ε̄

±
0 Γ4ε

±
0 ) ,

(

ε̄±0 Γ9ε
∓
0

)

= −3ωab
2l

(

ε̄±0 Γ4ε
∓
0

)

(

ε̄±0 Γ0ε
±
0

)

= ∓ l
3b(ε̄

±
0 Γ4ε

±
0 ) ,

(

ε̄±0 Γ1ε
∓
0

)

= ± iaω
2 (ε̄±0 Γ4ε

∓
0 ) .

(5.23)

With the aid of these we compute the independent bilinears.

(ε̄Γaε) ẽa =

(ε̄+
0 Γ4ε

−
0 )

[

iaω

2
cos

τ

b
ẽ1−

iaω

2

ρ

b
sin

τ

b
ẽ0+

(

3iωab

2l
f sin

τ

b
+1

)

ẽ4+

(−3ωab

2l
+if sin

τ

b

)

ẽ9

]

+(ε̄−0 Γ4ε
+
0 )

[−iaω

2
cos

τ

b
ẽ1+

iaω

2

ρ

b
sin

τ

b
ẽ0+

(−3iωab

2l
f sin

τ

b
+1

)

ẽ4+

(−3ωab

2l
−if sin

τ

b

)

ẽ9

]

+(ε̄+
0 Γ4ε

+
0 )

[

− l

3b
sin

τ

b
ẽ1−

l

3b

(

ρ

b
cos

τ

b
−f

)

ẽ0+

(

f cos
τ

b
− ρ

b

)

ẽ4+
2l

3ωab

(

f cos
τ

b
− ρ

b

)

ẽ9

]

+(ε̄−0 Γ4ε
−
0 )

[

− l

3b
sin

τ

b
ẽ1−

l

3b

(

ρ

b
cos

τ

b
+f

)

ẽ0+

(

f cos
τ

b
+

ρ

b

)

ẽ4+
2l

3ωab

(

f cos
τ

b
+

ρ

b

)

ẽ9

]

.

(5.24)

We have checked that these are Killing vectors of the near-horizon metric. Expressed in

the holonomic basis these are:

v(1) = − iaω

2bf
ρ sin

τ

b
∂τ +

iaωf

2
cos

τ

b
∂ρ+

(

2ab

ω
+

3ia2b2

lf
sin

τ

b

)

∂φ+

(

2abω

l2
− ia2b2

fl
sin

τ

b

)

∂ξ

v(2) = v(1) ∗

v(3) =
l

3bf

(

f − ρ

b
cos

τ

b

)

∂τ − fl

3b
sin

τ

b
∂ρ +

2ab

ωf
cos

τ

b
∂φ − 2ab

3ωf
cos

τ

b
∂ξ

v(4) = − l

3bf

(

f +
ρ

b
cos

τ

b

)

∂τ − fl

3b
sin

τ

b
∂ρ +

2ab

ωf
cos

τ

b
∂φ − 2ab

3ωf
cos

τ

b
∂ξ . (5.25)

The generators of the purely bosonic isometries do not change in the global coordinates.
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6. Poincaré D-brane probes

In this section we initiate the study of probe branes in the near-horizon geometry. To

establish our conventions we quote here the D3-brane action we shall be working with:

SD3 = −
[
∫

D3
dvol ± C(4)

]

. (6.1)

In this expression, dvol is the volume form associated to the induced metric on the world

volume, which we denote by h, and C(4) is the pull back of the four-form potential. The

positive sign is for a brane and the negative sign for an anti-brane. The conserved charges

will be specified using the point particle Lagrangian denoted by L obtained after integrating

over all the spatial coordinates. From a world-volume perspective, supersymmetry of a

configuration can be established by studying the kappa-symmetry condition. We say that

an (anti-) brane is supersymmetric if it obeys an equation of the form

Γε = ±iε . (6.2)

The negative sign is for a brane and the positive sign for an anti-brane. The spinor ε is the

background Killing spinor derived above. Here Γ is the kappa-projection matrix, defined

as

Γ =
1

4!

1√
−h

εσiσjσkσlγσiσjσkσl

= − 1√
−h

(γ0γ1γ2γ3 + (−h01γ23 − h03γ12 + h02γ13 + h13γ02 − h12γ03 − h23γ01)

+(h23h01 + h12h03 − h13h20)) , (6.3)

and γσi
are the world volume gamma matrices

γσi
= ∂σi

XµΓµ . (6.4)

and γσiσj
= 1

2 (γσi
γσj

− γσj
γσi

). The world-volume gamma matrices satisfy {γσi
, γσj

} =

2hσiσj
. As in (6.3), we will sometimes find it convenient to use the shorthand γi = γσi

for

world-volume indices.

6.1 Solving the equations of motion

In Poincaré coordinates one can write the 5-form RR field strength as F (5) = dC(4) where

C(4) =
2ω

λ
e0234 + cot α e678 ∧

(

e9 +
2√
3
A

)

(6.5)

− 2√
3

[

A ∧ (e57 + e68) ∧
(

e9 +
2√
3
A

)

+
l

2

(

e9 +
2√
3
A

)

∧
(

? F +
2√
3
A ∧ F

)]

,

with

?F +
2√
3
A ∧ F =

√
3

l

[

e0 ∧ (e23 − e14) +
lω2

4

(

1 +
2ω2

l2

)

σ123

]

. (6.6)
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6.1.1 Giant probes

Let us now turn to probe D3-branes that wrap a sub-manifold of the deformed S5 part of

the geometry similar to the giant gravitons of pure AdS. We choose the following static-

gauge ansatz

t = σ0, β = σ1, ξ2 = σ2, ξ3 = σ3 (6.7)

with the rest of the coordinates assumed to be functions of σ0 only. The DBI part of the

action follows from2

√

− dethσiσj
=

l2

4ω
cos σ1 sin σ1 cos3 α

[

cos2 α
(

ω3Σ3 + 8lr
)2 − 64lωr

(

ω2Σ3 − l2 sin2 αξ̇1

)

−4ω2
(

ω2Σ2
3(l

2 + ω2) + ω2l2
(

sin2 θψ̇2 + θ̇2 + 2Σ3 sin2 αξ̇1

)

+4l4
(

α̇2 + sin2 αξ̇2
1

))

− 4l4ω4ṙ2

λ2r2

]1/2

, (6.8)

where Σ3 = φ̇ + cos θψ̇. The WZ coupling for these configurations is

C(4)
σ0σ1σ2σ3

= l3
(

lξ̇1 +
2r

ω
+

ω2

4l
Σ3

)

cos4 α sin σ1 cos σ1 . (6.9)

It can be verified that for ξ̇1 = θ̇ = φ̇ = ψ̇ = α̇ = ṙ = 0 all equations of motion for

an anti-brane are satisfied identically. These giant-like solutions carry non-zero angular

momentum given by

Pφ = 2π2l2ω2 cos2 α, Pξ1 = 2π2l4 cos2 α. Pψ = 2π2l2ω2 cos2 α cos θ . (6.10)

The giant like solutions found here have H = 0. Note that Pφ|max = 2π2l2ω2, Pξ1 |max =

2π2l4, and Pψ|max = 2π2l2ω2 which suggest a stringy exclusion principle at work.

6.1.2 Dual-giant probes

Now we look for solutions that are analogous to the dual giant gravitons in AdS in that

their world volume takes up an S3 in the five-dimensional part of our geometry. Choosing

static gauge, our ansatz is

t = σ0, θ = σ1, φ = σ2, ψ = σ3 (6.11)

with all other coordinates assumed to be functions of σ0 only. Thus the DBI contribution

to the action follows from

√

−dethσiσj
=

ω5/2

16 l
sin σ1

[

ω

(

8r+lω
3

∑

i=1

µ2
i ξ̇i

)2

−4l(l2+ω2)
3

∑

i=1

µ2
i ξ̇i(4r+lωξ̇i)

]1/2

. (6.12)

2In this section we quote the full action for completeness. There are terms that can be dropped consis-

tently from the action without changing the equations of motion for the class of solutions we are interested

in. We will drop such terms from now on to avoid clutter.
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Without loss of generality we have dropped terms involving α̇, β̇ and ṙ that do not con-

tribute to the equations of motion for the configurations we are about to study. The pull

back of the four-form potential is

C(4)
σ0σ1σ2σ3

= −
[

4rω3

l
+ l2ω2

(

1 +
ω2

2l2

) 3
∑

i=1

µ2
i ξ̇i

]

1

8
sin σ1 (6.13)

To find solutions we first note that since the Lagrangian depends only on ξ̇i’s putting

ξ̈i = 0 would solve the ξi e.o.m . Setting ξ̇i = 0 solves the equations of motion and gives

the Hamiltonian H = −L. We find for the momenta conjugate to the angular variables

Pξi
= ∂L

∂ξ̇i

Pξi
= 3π2ω2l2

(

1 +
ω2

3l2

)

µ2
i . (6.14)

This means that
∑3

i=1 Pξi
= 3π2ω2l2

(

1 + ω2

3l2

)

on our solutions. Furthermore we find that

H = 0.

If we use the coordinates t̃ and φ̃, which give the asymptotic geometry of AdS5 × S5

in the standard global coordinates, then we see that the vanishing Hamiltonian actually

implies E = −2
l J where J is the spin of the probe branes when measured in the new

coordinates. When one considers multiple configurations of dual-giants in AdS5 ×S5 there

is an upper limit on their number given by the number of units of flux through the 5-

sphere [28, 29]. In our case too one expects that there is an upper limit on the number of

dual-giants.

6.2 Supersymmetry

Let us now investigate the kappa symmetry conditions for the configurations introduced

above.

6.2.1 Giant probes

For the solutions (6.7) we find the world-volume gamma matrices

γ0 =
4r

ω
Γ0P+ , (6.15)

γ1 = l cos αΓ6 , (6.16)

γ2 = −l cos α sinσ1(−Γ8 cos σ1 + (Γ9 cos α + Γ7 sin α) sin σ1) , (6.17)

γ3 = −l cos α cos σ1(Γ8 sinσ1 + (Γ9 cos α + Γ7 sin α) cos σ1) , (6.18)

On the solution
√
−h = 1

ω 2l3r cos4 α sin β cos β. Thus, using equation (6.3) we get

Γ = i sec α[−2Γ0P+(cos αΓ9 − sin αΓ7) − cos α] . (6.19)

And hence

Γε = iε , (6.20)

for ε = P−η, η being the Killing spinor in Poincaré coordinates with P+η = 0. This

sets ε+
0 = 0. Hence these configurations are half-BPS with respect to the near-horizon
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preserving precisely the supersymmetries of the full black hole. The isometry preserved by

the brane can be determined by adopting a similar procedure as in section 4. The Killing

vector preserved by the brane is proportional to ∂t which is just the Hamiltonian. Equating

this to zero gives us the H = 0 condition obtained from the equations of motion.

6.2.2 Dual-giant probes

For the solutions (6.11) we find the world-volume gamma matrices

γ0 =
4r

ω
Γ0P+ , (6.21)

γ1 =
ω

2
(sin σ2Γ2 + cos σ2Γ3) , (6.22)

γ2 = − ω

4l
(3ωΓ0 − 2λΓ4 + ωΓ9) , (6.23)

γ3 = cos σ1γ2 −
ω

2
sin σ1(cos σ2Γ2 − sin σ2Γ3) . (6.24)

On the solution
√
−h = ω3

2l r sin σ1. Using (6.3), we calculate

Γ =
i

2ω
[Γ0P+(3ωΓ0 − 2λΓ4 + ωΓ9) + 2ω] . (6.25)

With this we find Γε = −iε for ε = P−η with η the Killing spinor in Poincaré coordinates

and P+η = 0, as in the previous case. Hence these probes are half-BPS with respect to the

near-horizon. As in the previous case, the Killing spinor bilinear implies H = 0, consistent

with the equations of motion. Thus both the solutions preserve only the supersymmetries

of the full black hole.

7. Global D-brane probes

In this section we exhibit some half-BPS D3-brane probes in the near horizon geometry in

global coordinates.

7.1 Solving the equations of motion

In global coordinates we can take the 4-form RR potential to be

C(4) =
4ρ

lf
e0234 + cot α e678 ∧

(

e9 +
2√
3
A

)

− 2√
3

[

A ∧ (e57 + e68) ∧
(

e9 +
2√
3
A

)

+
l

2

(

e9 +
2√
3
A

)

∧
(

? F +
2√
3
A ∧ F

)]

,

?F +
2√
3
A ∧ F =

√
3

2

[

2ab

ω

(

1 +
ω2

2l2

)

e234 +
2

l
e014 +

2abρ

ωlf
e023

]

. (7.1)

7.1.1 Giant probes

We now exhibit a two classes of solutions to the DBI action of the D3-brane probes in

global coordinates. We first choose

τ = σ0, β = σ1, ξ2 = σ2, ξ3 = σ3 (7.2)
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with the rest of the coordinates functions of σ0. The DBI contribution to the action follows

from

√

− dethσiσj
=

1

8ω
l2 cos3 α sin 2β

[

64ρ2l2

a2b2
cos2 α +

8lωρ

ab

(

−8l2 sin2 αξ̇1 + 2ω2(cos2 α − 4)
)

+ω2
(

16l2 − 16l4 sin2 αξ̇2
1 + 8l2ω2 sin2 αξ̇1φ̇

+ω2φ̇2(−8l2 − 4ω2 + ω2 cos2 α)
)

]1/2

. (7.3)

The WZ coupling is

C(4)
σ0σ1σ2σ3

= l4 cos4 α cos σ1 sin σ1

[

ξ̇1 −
ω2

4l2
Σ3 +

2ρ

ωlab

]

, (7.4)

where, as before, Σ3 = φ̇ + cos θψ̇ and without loss of generality we have dropped terms

involving ρ̇, α̇, θ̇ and ψ̇ which do not contribute to the equations of motion. One can verify

that

|φ̇| =
2l

ωλ
, |ξ̇1| =

2ω

lλ
, ψ̇ = 0 (7.5)

are solutions to the Lagrangian L = −
√

− det hσiσj
± C

(4)
σ0σ1σ2σ3 for any constant value of

α,ψ and θ, provided ρ > −ρg for branes and ρ < ρg for anti-branes where

ρg =
3ωab2

2l
.

One must take φ̇ and ξ̇1 positive for an anti-brane and negative for a brane. The conserved

charges for these solutions are

Pφ =

(

2π2

3
l4 +

4π2aρω2l3

ρ ± ρg

)

cos2 α, Pξ1 = 2π2l4 cos2 α , (7.6)

with the above sign for branes and below for anti-branes. Note that Pφ is infinite at ρ = ρg

while Pξ1 is independent of ρ. We will demonstrate later on that supersymmetry dictates

ρ = 0. For this, the maximum value of the momenta are Pφ|max = 2π2l4

3 , Pξ1 |max =

2π2l4 again suggesting a stringy exclusion principle at work. It is easy to verify that the

Lagrangian vanishes and the Hamiltonian is given by

H =
2l

ωλ
|Pφ| +

2ω

lλ
|Pξ1 | (7.7)

This is actually the relation expected for BPS objects. To see this one can verify that the

following Killing vector of the background

2λ

3ω
∂τ +

4l

3ω2
∂φ +

4

3l
∂ξ1 (7.8)

is preserved by the probe brane solutions above for ρ = 0. This can be seen by considering

the bilinears of the supersymmetries preserved by the probe branes similar to those in
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section 4 and 5. Then identifying the generators ∂τ , ∂φ and ∂ξ1 with the charges H, Pφ

and Pξ1 respectively in eq. (7.8) and equating it to zero results in the BPS equation.

There is another class of solutions which have ψ̇ 6= 0 as well. It is easy to verify that

θ = 0, φ̇ = ψ̇ =
η l

ωλ
, ξ̇1 =

2ηω

lλ
(7.9)

and

θ = π, φ̇ = −ψ̇ =
ηl

ωλ
, ξ̇1 =

2ηω

lλ
(7.10)

are solutions to the action L = −
√

− dethσiσj
+ η C(4) for η = ±1 whenever

ρ ≤ ρg . (7.11)

The solutions at θ = 0 have

Pξ1 = η 4π2l4 cos2 α, Pφ = Pψ = η
2π2l2(l2 + 3ω2ρ/ρg)

3(1 − ρ/ρg)
cos2 α, (7.12)

and those at θ = π have

Pξ1 = η 4π2l4 cos2 α, Pφ = −Pψ = η
2π2l2(l2 + 3ω2ρ/ρg)

3(1 − ρ/ρg)
cos2 α. (7.13)

These configurations have vanishing Lagrangian and therefore their Hamiltonian is3

H =
l

ωλ
(|Pφ| + |Pψ|) +

2ω

lλ
|Pξ1 | =

2l

ωλ
|Pφ| +

2ω

lλ
|Pξ1 |. (7.14)

7.1.2 Dual-giant probes

Let us assume the most general ansatz (in static gauge) for a dual-giant graviton in global

coordinates:

τ = σ0, θ = σ1, φ = σ2, ψ = σ3, (7.15)

where all other embedding coordinates are functions of σ0. The DBI contribution to the

action may be written in the form

√

− dethσiσj
=

ω5/2

16l
sin σ1

(

ω

[

8ρ

ab
+ lω

3
∑

i=1

µ2
i ξ̇i

]2

−4(l2 + ω2)

[

ω

(

−1 + l2
3

∑

i=1

µ2
i ξ̇

2
i

)

+
4lρ

ab

3
∑

i=1

µ2
i ξ̇i

])1/2

. (7.16)

where hσiσj
denotes the induced metric on the world volume of the dual giant. Without loss

of generality we have dropped terms involving α̇, β̇ and ρ̇ that do not affect the equations

of motion on the configurations we are about to study. The induced four-form is

C(4)
σ0σ1σ2σ3

= −ω3

8

[

1

lλ
(l2 + ω2) +

l

ω

(

1 +
ω2

2l2

) 3
∑

i=1

µ2
i l ξ̇i +

4ρ

lab

]

sinσ1 , (7.17)

3One can express the Hamiltonian in manifestly gauge-invariant form in terms of the gauge-invariant

momenta Πi = Pi − Ai, where Ai is the effective particle gauge potential. To do so, one should fix the

constant appearing in the WZ term by demanding L− ẊiAi = 0. This effectively removes the piece coming

from the WZ term. In this case H = 2l
ωλ

|Πφ| +
2ω
lλ
|Πξ1 |.
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where we have chosen to add a constant for convenience which does not change the equa-

tions of motion. Then one can verify that

ξ̇1 = ξ̇1 = ξ̇3 =
2ω

lλ
(7.18)

the equations of motion of the action L = −
√

− dethσiσj
+ C(4) are satisfied when

ρ ≤ ρdg :=
lab2

2ω
. (7.19)

These solutions have the following conserved charges

Pξi
= π2ω2

[

3ω4 + 4l2(ω2 + ωρl/(2ab2))

l2 − 4ωρl/(2ab2)
− (2l2 + ω2)

]

µ2
i (7.20)

for i = 1, 2 and 3. Notice that these angular momenta diverge as the radial positions of

the dual-giants ρ approaches ρdg. Furthermore this critical value of the radial coordinate

is different from what the giants see which is 3ω2/l2 times ρdg. The Lagrangian evaluated

on the configurations again vanishes and so the Hamiltonian4 is given by

H =
2ω

lλ
(|Pξ1 | + |Pξ2 | + |Pξ3 |) (7.21)

which also diverges at ρ = ρdg. The same analysis can be repeated for branes with ρdg →
−ρdg and changing the signs of ξ̇i’s.

7.2 Supersymmetry

In this section we analyse the amount of supersymmetry preserved by the probes in global

coordinates.

7.2.1 Giant probes

First consider ψ̇ = 0. The pull-back gamma matrices are given by

γ0 = fΓ0 −
(

3ρ

l
∓ 2

aω

)

Γ4 +

(

± b

l
− 2ρ

ωab

)

Γ9 ±
4b

l
sinα(Γ7 cos α − Γ9 sin α) , (7.22)

γ1 = l cos αΓ6 , (7.23)

γ2 = −l cos α sin σ1 (− cos σ1Γ8 + sin σ1(cos αΓ9 + sin αΓ7)) , (7.24)

γ3 = −l cos α cos σ1 (sinσ1Γ8 + cos σ1(Γ9 cos α + Γ7 sin α)) , (7.25)

where the upper sign is for an anti-brane and the lower sign for a brane. Using these we

get

Γ =
il3 cos3 α sin σ1 cos σ1√

−h

(

± 6b

l
+

4ρ

ωab

)(

1

2
cos α + sin αΓ79P

1,2
+ − cos αP 1,2

+

)

, (7.26)

4The gauge-invariant form of the Hamiltonian as described in footnote 3 is given by H = 2ω
lλ

(|Πξ1 | +

|Πξ2 | + |Πξ3 |).
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where

P 1,2
+ =

1

2

[

1 +

(

±3b

l
+

2ρ

ωab

)−1 (

f Γ09 +

(

− 3ρ

l
± 2

aω

)

Γ49

)

]

,

and can be shown to be a projector. We further define the orthogonal projectors to be

P 1,2
− =

1

2

[

1 −
(

±3b

l
+

2ρ

ωab

)−1 (

fΓ09 +

(

− 3ρ

l
± 2

aω

)

Γ49

)

]

.

Hence, if we choose ε = P 1,2
− η with P 1,2

+ η = 0, η being the Killing spinor in global coordi-

nates, then it is easy to see that Γε = ±iε and that the configurations are thus half-BPS

with respect to the near-horizon. We also see that the projectors are ill defined at ρ = ±ρg

where the upper sign is for a brane and lower for anti-brane. These are the same positions

where the equations are not solvable for the corresponding cases. We must further ensure

that P 1,2
+ η = 0. First consider an anti-brane. Write

P 1
+ =

1

2
(1 + AΓ09 + BΓ49)

and the Killing spinor as

η =

(

e−
χ

2 cos
τ

2b
+ ie

χ

2 sin
τ

2b
Γ49

)

ε+
0 +

(

e
χ

2 cos
τ

2b
− ie−

χ

2 sin
τ

2b
Γ49

)

ε−0

= (f+ + ig+Γ49)ε
+
0 + (f− + ig−Γ49)ε

−
0 , (7.27)

with ρ = b sinhχ. Some useful relations are

Γ09ε
±
0 = ±2b

l

(

− 3

2
Γ49 +

l

ωab

)

ε±0 , (7.28)

Γ04ε
±
0 = ±2b

l

(

3

2
+

l

ωab
Γ49

)

ε±0 . (7.29)

We demand P 1
+η = 0 corresponding to P 1

−η being preserved. Now we note that ε±0 and

Γ49ε
∓
0 have the same chirality. This leads to the following equations on equating the

coefficient of cos τ
2b

e−χ/2

(

1 +
2A

ωa

)

ε+
0 = −eχ/2

(

3bA

l
+ B

)

Γ49ε
−
0 , (7.30)

eχ/2

(

3bA

l
+ B

)

ε+
0 = −e−χ/2

(

1 +
2A

ωa

)

Γ49ε
−
0 . (7.31)

These lead to the conclusion that ρ = 0 and ε+
0 = −Γ49ε

−
0 . It can be verified that these

conditions satisfy the equations obtained from the coefficients of sin τ
2b as well. The same

calculation can be repeated for the brane case. The conclusion is that the condition on the

constant spinors is ε+
0 = ±Γ49ε

−
0 , the upper sign for brane and lower for anti-brane and

ρ = 0.

The calculation for non-zero ψ̇ can be repeated in a similar manner. It turns out

that the world-volume gamma matrices are identical to the above case and hence the

supersymmetry analysis is identical to the one given there.
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7.2.2 Dual giants

The world-volume gamma matrices are

γ0 = −2

l
ρ

(

3

2
Γ4 +

l

ωab
Γ9

)

+ f Γ0 ±
4b

l
Γ9 (7.32)

γ1 =
ω

2
(cos φΓ3 + sin φΓ2) (7.33)

γ2 =
ω

2l

(

ω

2
Γ9 +

l

ab
Γ4

)

(7.34)

γ3 = cos θγ2 +
ω

2
sin θ (sin φΓ3 − cos φΓ2) , (7.35)

where the upper sign is for brane and lower for anti-brane. After some algebra one can

derive the following simple expression for the Kappa-symmetry projection matrix

Γ =
i√
−h

(ω

2

)2
sin θ(h02 − γ0γ2) , (7.36)

with

h02 − γ0γ2 =
ω

2l

[(

2l

ω
ρ ∓ 4

a

)

Γ49 + f

(

ω

2
Γ09 +

l

ab
Γ04

)]

(7.37)

We note that

− det h1 =
(ω

2

)4
sin2 θ (h021− γ0γ2)

2 =
ω6 sin2 σ1

4l2a2b2
(ρ ± ρdg)

21 , (7.38)

the upper sign is for brane and lower for anti-brane. We can thus form the projectors

P± = 1
2(1 ± iΓ). From the above we see that P± commutes with Γ0149, Γ23 and Γ57.

Furthermore, the projectors become ill defined at ρ = ρdg which is the same point where

the angular momenta blow up. The condition on the constant spinors are derived as follows:

For branes, we want to preserve Γε = −iε. Let us write Γ = c(AΓ49 + BΓ09 + CΓ04) where

c = iω3

8l
√
−h

sinσ1. Then after some tedious algebra we get

Γ

c
ε =

(

f+

(

A − 3bB

l
+

2C

ωa

)

− ig+

(

2B

ωa
+

3bC

l

))

Γ49ε
+
0

+

(

−f−

(

2B

ωa
+

3bC

l

)

− ig−

(

A +
3Bb

l
+

2C

ωa

))

ε−0

+

(

f+

(

2
B

ωa
+

3bC

l

)

− ig+

(

A +
3Bb

l
− 2C

ωa

))

ε+
0

+

(

f−

(

A +
3bB

l
− 2C

ωa

)

+ ig−

(

2B

ωa
+

3bC

l

))

Γ49ε
−
0 . (7.39)

Now we equate this to − i
cε. Equating the cos τ

2b piece

f+

(

A − 3bB

l
+

2C

ωa

)

Γ49ε
+
0 = f−

(

2B

ωa
+

3bC

l
− i

c

)

ε−0 , (7.40)

f+

(

2B

ωa
+

3bC

l
+

i

c

)

ε+
0 = −f−

(

A +
3bB

l
− 2C

ωa

)

Γ49ε
−
0 . (7.41)
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We can read off A,B,C from equation (7.37). This tells us that ρ = 0 and ε+
0 = Γ49ε

−
0 .

One can check that the other conditions arising from sin τ
2b are also satisfied. Thus we

conclude that, as for the giant case, supersymmetric dual giants also satisfy ρ = 0 and

ε+
0 = ±Γ49ε

−
0 , the upper sign for branes and lower for anti-branes.

Conserved Killing vector

The calculation of the Killing vector that the giant and dual giants preserve is now straight-

forward. Imposing ε+
0 = ±Γ49ε

−
0 , we get the Killing spinor to simplify to

ε = e−
iτ
2b (1 ± Γ49)ε

+
0 . (7.42)

Using this we find

ε̄Γaεẽa = 2ε̄+
0 (−Γ0ẽ0 ∓ Γ9ẽ4 ± Γ4ẽ9) ε0 . (7.43)

Now using (5.23), the Killing vector becomes

v = −2λ

3ω
ẽ0 ∓

2l

3ωab
ẽ4 ± ẽ9 , (7.44)

which leads to

H =
2ω

lλ
|Pξ| +

2l

ωλ
|Pφ| . (7.45)

This is the expected BPS relation for both giants and dual giants.

8. Conclusion

In this paper, we considered the near-horizon geometry of the simplest of the super-

symmetric AdS5 black holes with two equal angular momenta and a single U(1) electric

charge. It was shown that the isometry supergroup of the IIB uplift of this black hole is

SU(1, 1|1)×SU(2)×U(3). This was achieved by explicitly constructing the Killing spinors

of the geometry and then considering the bilinears following [17]. The near-horizon geom-

etry has a deformed 3-sphere S̃3 and a deformed 5-sphere S̃5 with a fibration of the time

coordinate of AdS2 over them. We considered both Poincaré and global-like coordinates

for the AdS2 part of the geometry. We found that the number of supersymmetries of the

near-horizon geometry of these black holes is twice that of the full solution.

We then exhibited several D3-brane configurations in this geometry that are analogous

to the giant and dual-giant gravitons of the AdS5×S5 background. The dual-giant like D3-

branes wrap the deformed-S3 and the giant like objects wrap an S3 inside the deformed-S5

part of the geometry. In the Poincaré coordinates the branes do not rotate. They still

carry non-zero angular momenta. In global coordinates the branes have to rotate in order

to satisfy the equations of motion. All the configurations considered in Poincaré coordinates

preserve two of the four supersymmetries. These two supersymmetries are simply those of

the full black hole solution restricted to the near-horizon geometry.

We showed that the probes in global coordinates preserve two of the four supersym-

metries of the background when placed at the centre ρ = 0 of AdS2 and so are half-BPS.

However, the configurations at a generic non-zero ρ do not preserve any supersymmetries.
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The D3-brane probes at generic ρ exhibit interesting features. In particular, they all sat-

isfy a BPS-like energy condition and see a critical value of the radial position where their

angular momenta diverge. It will be interesting to understand the physics behind this be-

haviour. We expect there to be more giant-type probe branes like those in [36]. There is a

duality between configurations of giants and dual-giants in AdS5×S5. It will be interesting

to see if such a duality holds in this case as well.

The results of this paper should help in counting microstates of the black hole under

consideration as mentioned in the introduction. To make further progress in this direction

one has to classify all the BPS objects in the global coordinates with a given set of super-

symmetries. Then one should be able to quantise them using methods similar to [13, 14]

(see also [32 – 35]) and count the different configurations with fixed quantum numbers.

There are several generalisations of the black holes considered here [3, 4, 24] which have

non-equal angular momenta in AdS5 directions and non-equal R-charges in S5 directions

(with one condition among them). However, we suspect that their near-horizon geometries

again preserve four supersymmetries. The reason is that the generators of the bosonic part

of the isometry group which are responsible for the generalisation do not participate in the

supersymmetric part of the full supergroup of isometries. We expect that the near-horizons

of the generalisations have the same supergroup part SU(1, 1|1) of the isometries but with

the bosonic parts SU(2) and U(3) broken to some subgroups of them. It will be interesting

to establish this in detail.

Following Strominger et al [8, 9] one can ask what is the holographically dual conformal

quantum mechanics of the string theory in the near-horizon geometry of the Gutowski-

Reall black holes considered here. Our superisometries should be an important input in

constructing the Lagrangian for such a quantum mechanics. One also expects that there

are some small black holes with more supersymmetries than the Gutowski-Reall black

holes (see [28] for instance). Counting the microstates in the near-horizon geometry of the

Gutowski-Reall black holes might capture the entropies of the small black holes as well as

in [37] in an analogous context. We hope to return to some of these questions in the future.
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[4] Z.W. Chong, M. Cvetič, H. Lu and C.N. Pope, General non-extremal rotating black holes in

minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301

[hep-th/0506029].

[5] H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS5 black holes,

JHEP 04 (2006) 036 [hep-th/0601156].

[6] P. Figueras, C.A.R. Herdeiro and F.P. Correia, On a class of 4D Kähler bases and AdS5

supersymmetric black holes, JHEP 11 (2006) 036 [hep-th/0608201].

[7] J.P. Gauntlett, J.B. Gutowski and N.V. Suryanarayana, A deformation of AdS5 × S5, Class.

and Quant. Grav. 21 (2004) 5021 [hep-th/0406188].

[8] D. Gaiotto, A. Simons, A. Strominger and X. Yin, D0-branes in black hole attractors,

hep-th/0412179.

[9] D. Gaiotto, A. Strominger and X. Yin, Superconformal black hole quantum mechanics, JHEP

11 (2005) 017 [hep-th/0412322].

[10] S. Kim and J. Raeymaekers, Superconformal quantum mechanics of small black holes, JHEP

08 (2005) 082 [hep-th/0505176].

[11] W. Li and A. Strominger, Supersymmetric probes in a rotating 5D attractor,

hep-th/0605139.

[12] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super

conformal theories, hep-th/0510251.

[13] I. Biswas, D. Gaiotto, S. Lahiri and S. Minwalla, Supersymmetric states of N = 4 Yang-Mills

from giant gravitons, hep-th/0606087.

[14] G. Mandal and N.V. Suryanarayana, Counting 1/8-BPS dual-giants, hep-th/0606088.

[15] M. Berkooz, D. Reichmann and J. Simon, A fermi surface model for large supersymmetric

AdS5 black holes, hep-th/0604023.

[16] J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes, Phys.

Rev. D 59 (1999) 025001 [hep-th/9809065].

[17] J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class.

and Quant. Grav. 16 (1999) 1 [hep-th/9810204].

[18] J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes,

Phys. Lett. B 391 (1997) 93 [hep-th/9602065].

[19] J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from

anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075].

[20] M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and Goliath, JHEP 08 (2000) 040

[hep-th/0008015].

– 24 –

http://jhep.sissa.it/stdsearch?paper=04%282004%29048
http://jhep.sissa.it/stdsearch?paper=04%282004%29048
http://arxiv.org/abs/hep-th/0401129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C041901
http://arxiv.org/abs/hep-th/0505112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C161301
http://arxiv.org/abs/hep-th/0506029
http://jhep.sissa.it/stdsearch?paper=04%282006%29036
http://arxiv.org/abs/hep-th/0601156
http://jhep.sissa.it/stdsearch?paper=11%282006%29036
http://arxiv.org/abs/hep-th/0608201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2C5021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2C5021
http://arxiv.org/abs/hep-th/0406188
http://arxiv.org/abs/hep-th/0412179
http://jhep.sissa.it/stdsearch?paper=11%282005%29017
http://jhep.sissa.it/stdsearch?paper=11%282005%29017
http://arxiv.org/abs/hep-th/0412322
http://jhep.sissa.it/stdsearch?paper=08%282005%29082
http://jhep.sissa.it/stdsearch?paper=08%282005%29082
http://arxiv.org/abs/hep-th/0505176
http://arxiv.org/abs/hep-th/0605139
http://arxiv.org/abs/hep-th/0510251
http://arxiv.org/abs/hep-th/0606087
http://arxiv.org/abs/hep-th/0606088
http://arxiv.org/abs/hep-th/0604023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C025001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C025001
http://arxiv.org/abs/hep-th/9809065
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C16%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C16%2C1
http://arxiv.org/abs/hep-th/9810204
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB391%2C93
http://arxiv.org/abs/hep-th/9602065
http://jhep.sissa.it/stdsearch?paper=06%282000%29008
http://arxiv.org/abs/hep-th/0003075
http://jhep.sissa.it/stdsearch?paper=08%282000%29040
http://arxiv.org/abs/hep-th/0008015


J
H
E
P
0
1
(
2
0
0
7
)
0
8
7

[21] A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual,

JHEP 08 (2000) 051 [hep-th/0008016].

[22] B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical

singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014].

[23] J.M. Figueroa-O’Farrill, On the supersymmetries of anti de Sitter vacua, Class. and Quant.

Grav. 16 (1999) 2043 [hep-th/9902066].

[24] S. Kim and K.-M. Lee, 1/16-BPS black holes and giant gravitons in the AdS5 × S5 space,

JHEP 12 (2006) 077 [hep-th/0607085].

[25] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and

catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170].
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